Cargando…

Data Wrangling with JavaScript /

Data Wrangling with JavaScript promotes JavaScript to the center of the data analysis stage! With this hands-on guide, you'll create a JavaScript-based data processing pipeline, handle common and exotic data, and master practical troubleshooting strategies. You'll also build interactive vi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Davis, Ashley (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Manning Publications, 2018.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Intro
  • Titlepage
  • Copyright
  • preface
  • acknowledgments
  • about this book
  • Who should read this book
  • How this book is organized: a roadmap
  • About the code
  • Book forum
  • Other online resources
  • about the author
  • about the cover illustration
  • Chapter 1: Getting started: establishing your data pipeline
  • 1.1 Why data wrangling?
  • 1.2 What's data wrangling?
  • 1.3 Why a book on JavaScript data wrangling?
  • 1.4 What will you get out of this book?
  • 1.5 Why use JavaScript for data wrangling?
  • 1.6 Is JavaScript appropriate for data analysis?
  • 1.7 Navigating the JavaScript ecosystem
  • 1.8 Assembling your toolkit
  • 1.9 Establishing your data pipeline
  • 1.9.1 Setting the stage
  • 1.9.2 The data-wrangling process
  • 1.9.3 Planning
  • 1.9.4 Acquisition, storage, and retrieval
  • 1.9.5 Exploratory coding
  • 1.9.6 Clean and prepare
  • 1.9.7 Analysis
  • 1.9.8 Visualization
  • 1.9.9 Getting to production
  • Summary
  • Chapter 2: Getting started with Node.js
  • 2.1 Starting your toolkit
  • 2.2 Building a simple reporting system
  • 2.3 Getting the code and data
  • 2.3.1 Viewing the code
  • 2.3.2 Downloading the code
  • 2.3.3 Installing Node.js
  • 2.3.4 Installing dependencies
  • 2.3.5 Running Node.js code
  • 2.3.6 Running a web application
  • 2.3.7 Getting the data
  • 2.3.8 Getting the code for chapter 2
  • 2.4 Installing Node.js
  • 2.4.1 Checking your Node.js version
  • 2.5 Working with Node.js
  • 2.5.1 Creating a Node.js project
  • 2.5.2 Creating a command-line application
  • 2.5.3 Creating a code library
  • 2.5.4 Creating a simple web server
  • 2.6 Asynchronous coding
  • 2.6.1 Loading a single file
  • 2.6.2 Loading multiple files
  • 2.6.3 Error handling
  • 2.6.4 Asynchronous coding with promises
  • 2.6.5 Wrapping asynchronous operations in promises
  • 2.6.6 Async coding with "async" and "await"
  • Summary.
  • Chapter 3: Acquisition, storage, and retrieval
  • 3.1 Building out your toolkit
  • 3.2 Getting the code and data
  • 3.3 The core data representation
  • 3.3.1 The earthquakes website
  • 3.3.2 Data formats covered
  • 3.3.3 Power and flexibility
  • 3.4 Importing data
  • 3.4.1 Loading data from text files
  • 3.4.2 Loading data from a REST API
  • 3.4.3 Parsing JSON text data
  • 3.4.4 Parsing CSV text data
  • 3.4.5 Importing data from databases
  • 3.4.6 Importing data from MongoDB
  • 3.4.7 Importing data from MySQL
  • 3.5 Exporting data
  • 3.5.1 You need data to export!
  • 3.5.2 Exporting data to text files
  • 3.5.3 Exporting data to JSON text files
  • 3.5.4 Exporting data to CSV text files
  • 3.5.5 Exporting data to a database
  • 3.5.6 Exporting data to MongoDB
  • 3.5.7 Exporting data to MySQL
  • 3.6 Building complete data conversions
  • 3.7 Expanding the process
  • Summary
  • Chapter 4: Working with unusual data
  • 4.1 Getting the code and data
  • 4.2 Importing custom data from text files
  • 4.3 Importing data by scraping web pages
  • 4.3.1 Identifying the data to scrape
  • 4.3.2 Scraping with Cheerio
  • 4.4 Working with binary data
  • 4.4.1 Unpacking a custom binary file
  • 4.4.2 Packing a custom binary file
  • 4.4.3 Replacing JSON with BSON
  • 4.4.4 Converting JSON to BSON
  • 4.4.5 Deserializing a BSON file
  • Summary
  • Chapter 5: Exploratory coding
  • 5.1 Expanding your toolkit
  • 5.2 Analyzing car accidents
  • 5.3 Getting the code and data
  • 5.4 Iteration and your feedback loop
  • 5.5 A first pass at understanding your data
  • 5.6 Working with a reduced data sample
  • 5.7 Prototyping with Excel
  • 5.8 Exploratory coding with Node.js
  • 5.8.1 Using Nodemon
  • 5.8.2 Exploring your data
  • 5.8.3 Using Data-Forge
  • 5.8.4 Computing the trend column
  • 5.8.5 Outputting a new CSV file
  • 5.9 Exploratory coding in the browser
  • Putting it all together.
  • 8.7.7 Filtering using queries
  • 8.7.8 Discarding data with projection
  • 8.7.9 Sorting large data sets
  • 8.8 Achieving better data throughput
  • 8.8.1 Optimize your code
  • 8.8.2 Optimize your algorithm
  • 8.8.3 Processing data in parallel
  • Summary
  • Chapter 9: Practical data analysis
  • 9.1 Expanding your toolkit
  • 9.2 Analyzing the weather data
  • 9.3 Getting the code and data
  • 9.4 Basic data summarization
  • 9.4.1 Sum
  • 9.4.2 Average
  • 9.4.3 Standard deviation
  • 9.5 Group and summarize
  • 9.6 The frequency distribution of temperatures
  • 9.7 Time series
  • 9.7.1 Yearly average temperature
  • 9.7.2 Rolling average
  • 9.7.3 Rolling standard deviation
  • 9.7.4 Linear regression
  • 9.7.5 Comparing time series
  • 9.7.6 Stacking time series operations
  • 9.8 Understanding relationships
  • 9.8.1 Detecting correlation with a scatter plot
  • 9.8.2 Types of correlation
  • 9.8.3 Determining the strength of the correlation
  • 9.8.4 Computing the correlation coefficient
  • Summary
  • Chapter 10: Browser-based visualization
  • 10.1 Expanding your toolkit
  • 10.2 Getting the code and data
  • 10.3 Choosing a chart type
  • 10.4 Line chart for New York City temperature
  • 10.4.1 The most basic C3 line chart
  • 10.4.2 Adding real data
  • 10.4.3 Parsing the static CSV file
  • 10.4.4 Adding years as the X axis
  • 10.4.5 Creating a custom Node.js web server
  • 10.4.6 Adding another series to the chart
  • 10.4.7 Adding a second Y axis to the chart
  • 10.4.8 Rendering a time series chart
  • 10.5 Other chart types with C3
  • 10.5.1 Bar chart
  • 10.5.2 Horizontal bar chart
  • 10.5.3 Pie chart
  • 10.5.4 Stacked bar chart
  • 10.5.5 Scatter plot chart
  • 10.6 Improving the look of our charts
  • 10.7 Moving forward with your own projects
  • Summary
  • Chapter 11: Server-side visualization
  • 11.1 Expanding your toolkit
  • 11.2 Getting the code and data.
  • 11.3 The headless browser
  • 11.4 Using Nightmare for server-side visualization
  • 11.4.1 Why Nightmare?
  • 11.4.2 Nightmare and Electron
  • 11.4.3 Our process: capturing visualizations with Nightmare
  • 11.4.4 Prepare a visualization to render
  • 11.4.5 Starting the web server
  • 11.4.6 Procedurally start and stop the web server
  • 11.4.7 Rendering the web page to an image
  • 11.4.8 Before we move on . . .
  • 11.4.9 Capturing the full visualization
  • Feeding the chart with data
  • Multipage reports
  • Debugging code in the headless browser
  • Making it work on a Linux server
  • 11.5 You can do much more with a headless browser
  • 11.5.1 Web scraping
  • 11.5.2 Other uses
  • Summary
  • Chapter 12: Live data
  • 12.1 We need an early warning system
  • 12.2 Getting the code and data
  • 12.3 Dealing with live data
  • 12.4 Building a system for monitoring air quality
  • 12.5 Set up for development
  • 12.6 Live-streaming data
  • 12.6.1 HTTP POST for infrequent data submission
  • 12.6.2 Sockets for high-frequency data submission
  • 12.7 Refactor for configuration
  • 12.8 Data capture
  • 12.9 An event-based architecture
  • Code restructure for event handling
  • 12.10.1 Triggering SMS alerts
  • 12.10.2 Automatically generating a daily report
  • Live data processing
  • Live visualization
  • Summary
  • Chapter 13: Advanced visualization with D3
  • 13.1 Advanced visualization
  • 13.2 Getting the code and data
  • 13.3 Visualizing space junk
  • 13.4 What is D3?
  • 13.5 The D3 data pipeline
  • 13.6 Basic setup
  • 13.7 SVG crash course
  • 13.7.1 SVG circle
  • 13.7.2 Styling
  • 13.7.3 SVG text
  • 13.7.4 SVG group
  • 13.8 Building visualizations with D3
  • 13.8.1 Element state
  • 13.8.2 Selecting elements
  • 13.8.3 Manually adding elements to our visualization
  • 13.8.4 Scaling to fit
  • 13.8.5 Procedural generation the D3 way
  • 13.8.6 Loading a data file.