Data science from scratch : first principles with Python /
Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they're also a good way to dive into the discipline without actually understanding data science. With this updated second edition, you'll learn how many of the most fundamental data science tool...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Sebastopol, CA :
O'Reilly Media,
[2019]
|
Edición: | Second edition. |
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Introduction
- A crash course in Python
- Visualizing data
- Linear algebra
- Statistics
- Probability
- Hypothesis and inference
- Gradient descent
- Getting data
- Working with data
- Machine learning
- k-Nearest neighbors
- Naive bayes
- Simple linear regression
- Multiple regression
- Logistic regression
- Decision trees
- Neural networks
- Deep learning
- Clustering
- Natural language processing
- Network analysis
- Recommender systems
- Databases and SQL
- MapReduce
- Data ethics
- Go forth and do data science.