Cargando…

Data science from scratch : first principles with Python /

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they're also a good way to dive into the discipline without actually understanding data science. With this updated second edition, you'll learn how many of the most fundamental data science tool...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Grus, Joel (Software engineer) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, [2019]
Edición:Second edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1097183567
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 190415s2019 caua ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d TEFOD  |d UKAHL  |d UMI  |d OCLCF  |d YDX  |d OCLCQ  |d VT2  |d UKSSU  |d ORZ  |d VFL  |d OCLCO  |d OCLCQ  |d AAA  |d OCLCO  |d ORU  |d OCL  |d OCLCQ  |d IVU 
019 |a 1097253446  |a 1099281079  |a 1104506848  |a 1138963131  |a 1202562508  |a 1240510943 
020 |a 9781492041108  |q (electronic book) 
020 |a 1492041106  |q (electronic book) 
020 |a 9781492041085  |q (electronic book) 
020 |a 1492041084  |q (electronic book) 
020 |z 9781492041139 
020 |z 1492041130  |q (paperback) 
029 1 |a AU@  |b 000065065682 
029 1 |a AU@  |b 000066231458 
029 1 |a AU@  |b 000067106807 
035 |a (OCoLC)1097183567  |z (OCoLC)1097253446  |z (OCoLC)1099281079  |z (OCoLC)1104506848  |z (OCoLC)1138963131  |z (OCoLC)1202562508  |z (OCoLC)1240510943 
037 |a B07825FF-C9F6-4776-80BF-7A0083EEEA38  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.9.D3 
050 4 |a QA76.73.P98 
072 7 |a COM  |x 051360  |2 bisacsh 
082 0 4 |a 005.7565  |2 23 
049 |a UAMI 
100 1 |a Grus, Joel  |c (Software engineer),  |e author. 
245 1 0 |a Data science from scratch :  |b first principles with Python /  |c Joel Grus. 
250 |a Second edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media,  |c [2019] 
300 |a 1 online resource (xvii, 376 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
336 |a still image  |b sti  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (EBSCO, April 16, 2019). 
588 0 |a Online resource; title from digital title page (viewed on March 9, 2021). 
505 0 |a Introduction -- A crash course in Python -- Visualizing data -- Linear algebra -- Statistics -- Probability -- Hypothesis and inference -- Gradient descent -- Getting data -- Working with data -- Machine learning -- k-Nearest neighbors -- Naive bayes -- Simple linear regression -- Multiple regression -- Logistic regression -- Decision trees -- Neural networks -- Deep learning -- Clustering -- Natural language processing -- Network analysis -- Recommender systems -- Databases and SQL -- MapReduce -- Data ethics -- Go forth and do data science. 
520 8 |a Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they're also a good way to dive into the discipline without actually understanding data science. With this updated second edition, you'll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today's messy glut of data holds answers to questions no one's even thought to ask. This book provides you with the know-how to dig those answers out. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Python (Computer program language) 
650 0 |a Database management. 
650 0 |a Data structures (Computer science) 
650 0 |a Data mining. 
650 0 |a Data mining  |x Mathematics. 
650 2 |a Data Mining 
650 6 |a Python (Langage de programmation) 
650 6 |a Bases de données  |x Gestion. 
650 6 |a Structures de données (Informatique) 
650 6 |a Exploration de données (Informatique) 
650 6 |a Exploration de données (Informatique)  |x Mathématiques. 
650 7 |a COMPUTERS  |x Programming Languages  |x Python.  |2 bisacsh 
650 7 |a Data mining  |x Mathematics.  |2 fast  |0 (OCoLC)fst02013374 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Data structures (Computer science)  |2 fast  |0 (OCoLC)fst00887978 
650 7 |a Database management.  |2 fast  |0 (OCoLC)fst00888037 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
776 0 8 |i Print version:  |a Grus, Joel (Software engineer).  |t Data science from scratch.  |b Second edition.  |d Sebastopol, CA : O'Reilly Media, 2019  |z 9781492041139  |z 1492041130  |w (OCoLC)1060198620 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781492041122/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36183995 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5750897 
938 |a EBSCOhost  |b EBSC  |n 2102311 
938 |a YBP Library Services  |b YANK  |n 16164327 
994 |a 92  |b IZTAP