Cargando…

Deep learning through sparse and low-rank modeling /

Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the tool...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Wang, Zhangyang (Editor ), Fu, Yun (Editor ), Huang, Thomas S., 1936- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Place of publication not identified] : Academic Press, an imprint of Elsevier, [2019]
Colección:Computer vision and pattern recognition series.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1097183504
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 190415s2019 xx ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d OPELS  |d UKAHL  |d OCLCF  |d UKMGB  |d YDX  |d OCLCQ  |d UMI  |d OCLCQ  |d S2H  |d OCLCO  |d LVT  |d OCLCQ  |d OCLCO  |d SFB  |d OCLCQ  |d OCLCO 
015 |a GBB979634  |2 bnb 
016 7 |a 019371052  |2 Uk 
019 |a 1097308470  |a 1125343318  |a 1229524420 
020 |a 9780128136607  |q (electronic bk.) 
020 |a 012813660X  |q (electronic bk.) 
020 |z 9780128136591 
020 |z 0128136596 
029 1 |a AU@  |b 000065223966 
029 1 |a AU@  |b 000066136310 
029 1 |a AU@  |b 000066231572 
029 1 |a AU@  |b 000066256958 
029 1 |a AU@  |b 000068846595 
029 1 |a UKMGB  |b 019371052 
035 |a (OCoLC)1097183504  |z (OCoLC)1097308470  |z (OCoLC)1125343318  |z (OCoLC)1229524420 
037 |a 9780128136607  |b Ingram Content Group 
050 4 |a Q325.5 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
245 0 0 |a Deep learning through sparse and low-rank modeling /  |c edited by Zhangyang Wang, Yun Fu, Thomas S. Huang. 
264 1 |a [Place of publication not identified] :  |b Academic Press, an imprint of Elsevier,  |c [2019] 
264 4 |c Ã2019 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Computer vision and pattern recognition series 
504 |a Includes bibliographical references and index. 
588 0 |a Vendor-supplied metadata. 
505 0 |a Front Cover; Deep Learning Through Sparse and Low-Rank Modeling; Copyright; Contents; Contributors; About the Editors; Preface; Acknowledgments; 1 Introduction; 1.1 Basics of Deep Learning; 1.2 Basics of Sparsity and Low-Rankness; 1.3 Connecting Deep Learning to Sparsity and Low-Rankness; 1.4 Organization; References; 2 Bi-Level Sparse Coding: A Hyperspectral Image Classi cation Example; 2.1 Introduction; 2.2 Formulation and Algorithm; 2.2.1 Notations; 2.2.2 Joint Feature Extraction and Classi cation; 2.2.2.1 Sparse Coding for Feature Extraction 
505 8 |a 2.2.2.2 Task-Driven Functions for Classi cation2.2.2.3 Spatial Laplacian Regularization; 2.2.3 Bi-level Optimization Formulation; 2.2.4 Algorithm; 2.2.4.1 Stochastic Gradient Descent; 2.2.4.2 Sparse Reconstruction; 2.3 Experiments; 2.3.1 Classi cation Performance on AVIRIS Indiana Pines Data; 2.3.2 Classi cation Performance on AVIRIS Salinas Data; 2.3.3 Classi cation Performance on University of Pavia Data; 2.4 Conclusion; 2.5 Appendix; References; 3 Deep l0 Encoders: A Model Unfolding Example; 3.1 Introduction; 3.2 Related Work; 3.2.1 l0- and l1-Based Sparse Approximations 
505 8 |a 3.2.2 Network Implementation of l1-Approximation3.3 Deep l0 Encoders; 3.3.1 Deep l0-Regularized Encoder; 3.3.2 Deep M-Sparse l0 Encoder; 3.3.3 Theoretical Properties; 3.4 Task-Driven Optimization; 3.5 Experiment; 3.5.1 Implementation; 3.5.2 Simulation on l0 Sparse Approximation; 3.5.3 Applications on Classi cation; 3.5.4 Applications on Clustering; 3.6 Conclusions and Discussions on Theoretical Properties; References; 4 Single Image Super-Resolution: From Sparse Coding to Deep Learning; 4.1 Robust Single Image Super-Resolution via Deep Networks with Sparse Prior; 4.1.1 Introduction 
505 8 |a 4.1.2 Related Work4.1.3 Sparse Coding Based Network for Image SR; 4.1.3.1 Image SR Using Sparse Coding; 4.1.3.2 Network Implementation of Sparse Coding; 4.1.3.3 Network Architecture of SCN; 4.1.3.4 Advantages over Previous Models; 4.1.4 Network Cascade for Scalable SR; 4.1.4.1 Network Cascade for SR of a Fixed Scaling Factor; 4.1.4.2 Network Cascade for Scalable SR; 4.1.4.3 Training Cascade of Networks; 4.1.5 Robust SR for Real Scenarios; 4.1.5.1 Data-Driven SR by Fine-Tuning; 4.1.5.2 Iterative SR with Regularization; Blurry Image Upscaling; Noisy Image Upscaling; 4.1.6 Implementation Details 
505 8 |a 4.1.7 Experiments4.1.7.1 Algorithm Analysis; 4.1.7.2 Comparison with State-of-the-Art; 4.1.7.3 Robustness to Real SR Scenarios; Data-Driven SR by Fine-Tuning; Regularized Iterative SR; 4.1.8 Subjective Evaluation; 4.1.9 Conclusion and Future Work; 4.2 Learning a Mixture of Deep Networks for Single Image Super-Resolution; 4.2.1 Introduction; 4.2.2 The Proposed Method; 4.2.3 Implementation Details; 4.2.4 Experimental Results; 4.2.4.1 Network Architecture Analysis; 4.2.4.2 Comparison with State-of-the-Art; 4.2.4.3 Runtime Analysis; 4.2.5 Conclusion and Future Work; References 
520 |a Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Machine learning  |2 fast 
700 1 |a Wang, Zhangyang,  |e editor. 
700 1 |a Fu, Yun,  |e editor. 
700 1 |a Huang, Thomas S.,  |d 1936-  |e editor. 
776 0 8 |i Print version:  |t Deep learning through sparse and low-rank modeling.  |d [Place of publication not identified] : Academic Press, an imprint of Elsevier, [2019]  |z 0128136596  |z 9780128136591  |w (OCoLC)1022780543 
830 0 |a Computer vision and pattern recognition series. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780128136607/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH32698943 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5750337 
938 |a EBSCOhost  |b EBSC  |n 1724681 
938 |a YBP Library Services  |b YANK  |n 16164016 
994 |a 92  |b IZTAP