Cargando…

Mastering machine learning with R : advanced machine learning techniques for building smart applications with R 3.5 /

Stay updated with expert techniques for solving data analytics and machine learning challenges and gain insights from complex projects and power up your applications Key Features Build independent machine learning (ML) systems leveraging the best features of R 3.5 Understand and apply different mach...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lesmeister, Cory (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2019.
Edición:Third edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1090681126
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 190326s2019 enka ob 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d YDX  |d N$T  |d K6U  |d OCLCO  |d CZL  |d OCLCQ  |d OCLCO  |d KSU  |d OCLCQ  |d PSYSI  |d OCLCQ  |d OCLCO 
019 |a 1085203449 
020 |a 9781789613568 
020 |a 1789613566 
020 |z 9781789618006 
020 |z 1789618002 
035 |a (OCoLC)1090681126  |z (OCoLC)1085203449 
037 |a CL0501000036  |b Safari Books Online 
050 4 |a Q325.5 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.502855133  |2 23 
049 |a UAMI 
100 1 |a Lesmeister, Cory,  |e author. 
245 1 0 |a Mastering machine learning with R :  |b advanced machine learning techniques for building smart applications with R 3.5 /  |c Cory Lesmeister. 
250 |a Third edition. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2019. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed March 25, 2019). 
500 |a Previous edition published: 2017. 
504 |a Includes bibliographical references. 
520 |a Stay updated with expert techniques for solving data analytics and machine learning challenges and gain insights from complex projects and power up your applications Key Features Build independent machine learning (ML) systems leveraging the best features of R 3.5 Understand and apply different machine learning techniques using real-world examples Use methods such as multi-class classification, regression, and clustering Book Description Given the growing popularity of the R-zerocost statistical programming environment, there has never been a better time to start applying ML to your data. This book will teach you advanced techniques in ML, using? the latest code in R 3.5. You will delve into various complex features of supervised learning, unsupervised learning, and reinforcement learning algorithms to design efficient and powerful ML models. This newly updated edition is packed with fresh examples covering a range of tasks from different domains. Mastering Machine Learning with R starts by showing you how to quickly manipulate data and prepare it for analysis. You will explore simple and complex models and understand how to compare them. You'll also learn to use the latest library support, such as TensorFlow and Keras-R, for performing advanced computations. Additionally, you'll explore complex topics, such as natural language processing (NLP), time series analysis, and clustering, which will further refine your skills in developing applications. Each chapter will help you implement advanced ML algorithms using real-world examples. You'll even be introduced to reinforcement learning, along with its various use cases and models. In the concluding chapters, you'll get a glimpse into how some of these blackbox models can be diagnosed and understood. By the end of this book, you'll be equipped with the skills to deploy ML techniques in your own projects or at work. What you will learn Prepare data for machine learning methods with ease Understand how to write production-ready code and package it for use Produce simple and effective data visualizations for improved insights Master advanced methods, such as Boosted Trees and deep neural networks Use natural language processing to extract insights in relation to text Implement tree-based classifiers, including Random Forest and Boosted Tree Who this book is for This book is for data science professionals, machine learning engineers, or anyone who is looking for the ideal guide to help them implement ... 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a R (Computer program language) 
650 6 |a Apprentissage automatique. 
650 6 |a R (Langage de programmation) 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Machine learning  |2 fast 
650 7 |a R (Computer program language)  |2 fast 
776 0 8 |i Print version:  |z 1789618002  |z 9781789618006  |w (OCoLC)1084559171 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781789618006/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a EBSCOhost  |b EBSC  |n 2016363 
938 |a YBP Library Services  |b YANK  |n 16032330 
994 |a 92  |b IZTAP