Cargando…

Intelligent data analysis for biomedical applications : challenges and solutions /

Intelligent Data Analysis for Biomedical Applications: Challenges and Solutions presents specialized statistical, pattern recognition, machine learning, data abstraction and visualization tools for the analysis of data and discovery of mechanisms that create data. It provides computational methods a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Hemanth, D. Jude (Editor ), Gupta, Deepak, active 2015-2016 (Editor ), Balas, Valentina Emilia (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, 2019.
Colección:Intelligent data centric systems.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1090301530
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 190321s2019 enk ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d OPELS  |d EBLCP  |d UKMGB  |d YDX  |d UKAHL  |d OCLCF  |d OCLCQ  |d UMI  |d OCLCQ  |d S2H  |d OCLCO  |d ERF  |d OCLCO  |d LVT  |d OCLCA  |d OCLCO  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ 
015 |a GBB959464  |2 bnb 
016 7 |a 019319510  |2 Uk 
019 |a 1090475519  |a 1113408963  |a 1124929444  |a 1229720779 
020 |a 9780128156438  |q (electronic bk.) 
020 |a 0128156430  |q (electronic bk.) 
020 |a 9780128155530  |q (electronic bk.) 
020 |a 0128155531  |q (electronic bk.) 
029 1 |a AU@  |b 000065138650 
029 1 |a AU@  |b 000066135774 
029 1 |a AU@  |b 000066232731 
029 1 |a AU@  |b 000067106917 
029 1 |a AU@  |b 000068857154 
029 1 |a AU@  |b 000070438429 
029 1 |a UKMGB  |b 019319510 
035 |a (OCoLC)1090301530  |z (OCoLC)1090475519  |z (OCoLC)1113408963  |z (OCoLC)1124929444  |z (OCoLC)1229720779 
037 |a 9780128156438  |b Ingram Content Group 
050 4 |a QH324.2 
072 7 |a COM  |x 082000  |2 bisacsh 
072 7 |a TGB  |2 bicssc 
072 7 |a UFM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
082 0 4 |a 005.7  |2 23 
049 |a UAMI 
245 0 0 |a Intelligent data analysis for biomedical applications :  |b challenges and solutions /  |c edited by Jude Hemanth, Deepak Gupta, Valentina Emilia Balas. 
264 1 |a London :  |b Academic Press,  |c 2019. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Intelligent data centric systems 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed March 25, 2019) 
504 |a Includes bibliographical references and index. 
520 |a Intelligent Data Analysis for Biomedical Applications: Challenges and Solutions presents specialized statistical, pattern recognition, machine learning, data abstraction and visualization tools for the analysis of data and discovery of mechanisms that create data. It provides computational methods and tools for intelligent data analysis, with an emphasis on problem-solving relating to automated data collection, such as computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and more. This book provides useful references for educational institutions, industry professionals, researchers, scientists, engineers and practitioners interested in intelligent data analysis, knowledge discovery, and decision support in databases. 
505 0 |a Front Cover; Intelligent Data Analysis for Biomedical Applications; Copyright Page; Contents; List of Contributors; 1 IoT-Based Intelligent Capsule Endoscopy System: A Technical Review; 1.1 Introduction; 1.2 Data Acquisition; 1.2.1 Image Sensor; 1.2.2 Optical Sensor; 1.2.3 Pressure, Temperature, and pH-Monitoring Sensor; 1.2.4 Other Ingestible Sensors; 1.3 On-Chip Data-Processing Unit; 1.3.1 Image Compression; 1.3.2 Application Specific Integrated Circuit Design; 1.3.3 Radiofrequency Transmission; 1.3.4 Power Management; 1.4 Data Management of Wireless Capsule Endoscopy Systems 
505 8 |a 1.5 IoT-Based Wireless Capsule Endoscopy System1.5.1 Intelligence in the System; 1.5.2 Real-Time Sensing; 1.5.3 Internet of Things Protocol; 1.5.4 Connectivity; 1.5.5 Security; 1.5.6 Improved Outcomes of Treatment; 1.6 Future Challenges; 1.7 Conclusion; References; 2 Optimization of Methods for Image-Texture Segmentation Using Ant Colony Optimization; 2.1 Introduction; 2.2 Implementation of Ant Colony Optimization Algorithm; 2.2.1 Isula Framework; 2.2.2 Ant Route Construction; 2.2.3 Ant Pheromone Update; 2.3 Image Segmentation Techniques; 2.3.1 Threshold-Based Segmentation 
505 8 |a 2.3.1.1 Otsu' Algorithm2.3.1.2 Ant Colony Optimization-Based Multilevel Thresholds Selection; 2.3.1.3 Algorithm for Ant Colony Optimization; 2.3.2 Edge-Based Segmentation; 2.3.2.1 Ant Colony Optimization-Based Edge Detection Initialization; 2.3.2.2 Ant Colony Optimization-Based Structuring Process; 2.3.2.3 Ant Colony Optimization-Based Updating Process; 2.3.2.4 Decision Process; 2.4 Evaluation of Segmentation Techniques; 2.4.1 Mean-Square Error; 2.4.2 Root-Mean-Square-Error; 2.4.3 Signal-to-Noise Ratio; 2.4.4 Peak Signal-to-Noise Ratio; 2.5 Experiments and Results 
505 8 |a 2.5.1 Ant Colony Optimization-Image-Segmentation Using the Isula Framework2.5.2 Performance Testing Ant Colony Optimization Image Segmentation Algorithm; 2.5.3 Application of Ant Colony Optimization on Segmentation of Brain MRI; 2.5.4 Ant Colony Optimization-Image Segmentation on Iris Images; 2.5.5 Comparison of Results; 2.6 Conclusion; References; Further Reading; 3 A Feature Fusion-Based Discriminant Learning Model for Diagnosis of Neuromuscular Disorders Using Single-Channel Needle E ... ; 3.1 Introduction; 3.2 State-of-Art-Methods; 3.3 Theoretical Modeling of Learning from Big Data 
505 8 |a 3.3.1 Strategy Statement3.3.2 Discriminant Feature Fusion Framework; 3.3.3 Generalized Multidomain Learning; 3.4 Medical Measurements and Data Analysis; 3.4.1 Electromyogram Signal Recording Setup; 3.4.2 Electromyogram Datasets; 3.5 Results and Discussion; 3.5.1 Correlation Analysis; 3.5.2 Performance Investigation of Discriminant Learning Scheme; 3.5.3 Comparative Study; 3.6 Conclusion; References; Further Reading; 4 Evolution of Consciousness Systems With Bacterial Behaviour; 4.1 Introduction; 4.2 Proposal; 4.2.1 Working Assumptions?; 4.2.2 Real Life Assumptions; 4.2.3 Consciousness Theory 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Bioinformatics. 
650 0 |a Medical sciences  |x Data processing. 
650 0 |a Data mining. 
650 0 |a Big data. 
650 1 2 |a Computational Biology 
650 1 2 |a Medicine 
650 2 |a Data Mining 
650 6 |a Bio-informatique. 
650 6 |a Sciences de la santé  |x Informatique. 
650 6 |a Exploration de données (Informatique) 
650 6 |a Données volumineuses. 
650 7 |a COMPUTERS  |x Bioinformatics.  |2 bisacsh 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Bioinformatics.  |2 fast  |0 (OCoLC)fst00832181 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Medical sciences  |x Data processing.  |2 fast  |0 (OCoLC)fst01014605 
700 1 |a Hemanth, D. Jude,  |e editor. 
700 1 |a Gupta, Deepak,  |d active 2015-2016,  |e editor. 
700 1 |a Balas, Valentina Emilia,  |e editor. 
776 0 8 |i Print version:  |t Intelligent data analysis for biomedical applications.  |d London : Academic Press, 2019  |z 0128155531  |z 9780128155530  |w (OCoLC)1045449101 
830 0 |a Intelligent data centric systems. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780128156438/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH33677449 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5735522 
938 |a EBSCOhost  |b EBSC  |n 1852714 
938 |a YBP Library Services  |b YANK  |n 16123860 
994 |a 92  |b IZTAP