Cargando…

Reinforcement learning in motion /

"Reinforcement Learning in Motion introduces you to the exciting world of machine systems that learn from their environments! Developer, data scientist, and expert instructor Phil Tabor guides you from the basics all the way to programming your own constantly-learning AI agents. In this course,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Tabor, Phil (Orador)
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : Manning Publications, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1090069403
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 190318s2019 xx 357 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d TOH  |d OCLCO  |d OCLCQ  |d OCLCO 
029 1 |a AU@  |b 000067116951 
035 |a (OCoLC)1090069403 
037 |a CL0501000034  |b Safari Books Online 
050 4 |a Q325.6 
049 |a UAMI 
100 1 |a Tabor, Phil,  |e speaker. 
245 1 0 |a Reinforcement learning in motion /  |c Phil Tabor. 
264 1 |a [Place of publication not identified] :  |b Manning Publications,  |c 2019. 
300 |a 1 online resource (1 streaming video file (5 hr., 56 min., 42 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Phil Tabor. 
500 |a Title from resource description page (Safari, viewed March 13, 2019). 
520 |a "Reinforcement Learning in Motion introduces you to the exciting world of machine systems that learn from their environments! Developer, data scientist, and expert instructor Phil Tabor guides you from the basics all the way to programming your own constantly-learning AI agents. In this course, he'll break down key concepts like how RL systems learn, how to sense and process environmental data, and how to build and train AI agents. As you learn, you'll master the core algorithms and get to grips with tools like Open AI Gym, numpy, and Matplotlib. Reinforcement systems learn by doing, and so will you in this hands-on course! You'll build and train a variety of algorithms as you go, each with a specific purpose in mind. The rich and interesting examples include simulations that train a robot to escape a maze, help a mountain car get up a steep hill, and balance a pole on a sliding cart. You'll even teach your agents how to navigate Windy Gridworld, a standard exercise for finding the optimal path even with special conditions!"--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Reinforcement learning. 
650 0 |a Artificial intelligence. 
650 0 |a Machine learning. 
650 6 |a Apprentissage par renforcement (Intelligence artificielle) 
650 6 |a Intelligence artificielle. 
650 6 |a Apprentissage automatique. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Reinforcement learning.  |2 fast  |0 (OCoLC)fst01732553 
655 4 |a Electronic videos. 
856 4 0 |u https://learning.oreilly.com/videos/~/10000MNLV201807/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP