Cargando…

Design and analysis of composite structures for automotive applications : chassis and drivetrain /

A design reference for engineers developing composite components for automotive chassis, suspension, and drivetrain applications This book provides a theoretical background for the development of elements of car suspensions. It begins with a description of the elastic-kinematics of the vehicle and c...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kobelev, Vladimir, 1959- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ : Wiley, 2019.
Edición:First edition.
Colección:Automotive series (Wiley)
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Cover; Title Page; Copyright; Contents; Foreword; Series Preface; List of Symbols and Abbreviations; Introduction; About the Companion Website; Chapter 1 Elastic Anisotropic Behavior of Composite Materials; 1.1 Anisotropic Elasticity of Composite Materials; 1.1.1 Fourth Rank Tensor Notation of Hooke's Law; 1.1.2 Voigt's Matrix Notation of Hooke's Law; 1.1.3 Kelvin's Matrix Notation of Hooke's Law; 1.2 Unidirectional Fiber Bundle; 1.2.1 Components of a Unidirectional Fiber Bundle; 1.2.2 Elastic Properties of a Unidirectional Fiber Bundle
  • 1.2.3 Effective Elastic Constants of Unidirectional Composites1.3 Rotational Transformations of Material Laws, Stress and Strain; 1.3.1 Rotation of Fourth Rank Elasticity Tensors; 1.3.2 Rotation of Elasticity Matrices in Voigt's Notation; 1.3.3 Rotation of Elasticity Matrices in Kelvin's Notation; 1.4 Elasticity Matrices for Laminated Plates; 1.4.1 Voigt's Matrix Notation for Anisotropic Plates; 1.4.2 Rotation of Matrices in Voigt's Notation; 1.4.3 Kelvin's Matrix Notation for Anisotropic Plates; 1.4.4 Rotation of Matrices in Kelvin's Notation; 1.5 Coupling Effects of Anisotropic Laminates
  • 1.5.1 Orthotropic Laminate Without Coupling1.5.2 Anisotropic Laminate Without Coupling; 1.5.3 Anisotropic Laminate With Coupling; 1.5.4 Coupling Effects in Laminated Thin-Walled Sections; 1.6 Conclusions; References; Chapter 2 Phenomenological Failure Criteria of Composites; 2.1 Phenomenological Failure Criteria; 2.1.1 Criteria for Static Failure Behavior; 2.1.2 Stress Failure Criteria for Isotropic Homogenous Materials; 2.1.3 Phenomenological Failure Criteria for Composites; 2.1.4 Phenomenological Criteria Without Stress Coupling; 2.1.4.1 Criterion of Maximum Averaged Stresses
  • 2.1.4.2 Criterion of Maximum Averaged Strains2.1.5 Phenomenological Criteria with Stress Coupling; 2.1.5.1 Mises-Hill Anisotropic Failure Criterion; 2.1.5.2 Pressure-Sensitive Mises-Hill Anisotropic Failure Criterion; 2.1.5.3 Tensor-Polynomial Failure Criterion; 2.1.5.4 Tsai-Wu Criterion; 2.1.5.5 Assessment of Coefficients in Tensor-Polynomial Criteria; 2.2 Differentiating Criteria; 2.2.1 Fiber and Intermediate Break Criteria; 2.2.2 Hashin Strength Criterion; 2.2.3 Delamination Criteria; 2.3 Physically Based Failure Criteria; 2.3.1 Puck Criterion; 2.3.2 Cuntze Criterion
  • 2.4 Rotational Transformation of Anisotropic Failure Criteria2.5 Conclusions; References; Chapter 3 Micromechanical Failure Criteria of Composites; 3.1 Pullout of Fibers from the Elastic-Plastic Matrix; 3.1.1 Axial Tension of Fiber and Matrix; 3.1.2 Shear Stresses in Matrix Cylinders; 3.1.3 Coupled Elongation of Fibers and Matrix; 3.1.4 Failures in Matrix and Fibers; 3.1.4.1 Equations for Mean Axial Displacements of Fibers and Matrix; 3.1.4.2 Solutions of Equations for Mean Axial Displacements of Fibers and Matrix; 3.1.5 Rupture of Matrix and Pullout of Fibers from Crack Edges in a Matrix