Cargando…

Hands-on machine learning for algorithmic trading : design and implement investment strategies based on smart algorithms that learn from data using Python /

With the help of this book, you'll build smart algorithmic models using machine learning algorithms covering tasks such as time series forecasting, backtesting, trade predictions, and more using easy-to-follow examples. By the end, you'll be able to adopt algorithmic trading in your own bu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Jansen, Stefan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2018.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1088729705
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 190228s2018 enka o 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d N$T  |d OCLCF  |d YDX  |d TEFOD  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d KSU  |d OCLCQ  |d OCLCO 
019 |a 1103987112 
020 |a 1789342716 
020 |a 9781789342710  |q (electronic bk.) 
020 |z 9781789346411 
020 |z 178934641X 
029 1 |a AU@  |b 000065344148 
035 |a (OCoLC)1088729705  |z (OCoLC)1103987112 
037 |a CL0501000030  |b Safari Books Online 
037 |a 99B6A1DC-1E78-43C2-969E-8CB874E3827E  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a HG104 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Jansen, Stefan,  |e author. 
245 1 0 |a Hands-on machine learning for algorithmic trading :  |b design and implement investment strategies based on smart algorithms that learn from data using Python /  |c Stefan Jansen. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2018. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed February 25, 2019). 
505 0 |a Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Machine Learning for Trading; How to read this book; What to expect; Who should read this book; How the book is organized; Part I -- the framework -- from data to strategy design; Part 2 -- ML fundamentals; Part 3 -- natural language processing; Part 4 -- deep and reinforcement learning; What you need to succeed; Data sources; GitHub repository; Python libraries; The rise of ML in the investment industry; From electronic to high-frequency trading; Factor investing and smart beta funds 
505 8 |a Algorithmic pioneers outperform humans at scaleML driven funds attract 1 trillion AUM; The emergence of quantamental funds; Investments in strategic capabilities; ML and alternative data; Crowdsourcing of trading algorithms; Design and execution of a trading strategy; Sourcing and managing data; Alpha factor research and evaluation; Portfolio optimization and risk management; Strategy backtesting; ML and algorithmic trading strategies; Use Cases of ML for Trading ; Data mining for feature extraction; Supervised learning for alpha factor creation and aggregation; Asset allocation 
505 8 |a Testing trade ideasReinforcement learning; Summary; Chapter 2: Market and Fundamental Data; How to work with market data; Market microstructure; Marketplaces; Types of orders; Working with order book data; The FIX protocol; Nasdaq TotalView-ITCH Order Book data; Parsing binary ITCH messages; Reconstructing trades and the order book; Regularizing tick data; Tick bars; Time bars; Volume bars; Dollar bars; API access to market data; Remote data access using pandas; Reading html tables; pandas-datareader for market data; The Investor Exchange ; Quantopian; Zipline; Quandl 
505 8 |a Other market-data providersHow to work with fundamental data; Financial statement data; Automated processing -- XBRL; Building a fundamental data time series; Extracting the financial statements and notes dataset; Retrieving all quarterly Apple filings; Building a price/earnings time series; Other fundamental data sources; pandas_datareader -- macro and industry data; Efficient data storage with pandas; Summary; Chapter 3: Alternative Data for Finance; The alternative data revolution; Sources of alternative data; Individuals; Business processes; Sensors; Satellites; Geolocation data 
505 8 |a Evaluating alternative datasetsEvaluation criteria; Quality of the signal content; Asset classes; Investment style; Risk premiums; Alpha content and quality; Quality of the data; Legal and reputational risks; Exclusivity; Time horizon; Frequency; Reliability; Technical aspects; Latency; Format; The market for alternative data; Data providers and use cases; Social sentiment data; Dataminr; StockTwits; RavenPack; Satellite data; Geolocation data; Email receipt data; Working with alternative data; Scraping OpenTable data; Extracting data from HTML using requests and BeautifulSoup 
520 |a With the help of this book, you'll build smart algorithmic models using machine learning algorithms covering tasks such as time series forecasting, backtesting, trade predictions, and more using easy-to-follow examples. By the end, you'll be able to adopt algorithmic trading in your own business and implement intelligent investigative strategies. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 0 |a Finance  |x Data processing. 
650 0 |a Finance  |x Statistical methods. 
650 6 |a Apprentissage automatique. 
650 6 |a Python (Langage de programmation) 
650 6 |a Finances  |x Informatique. 
650 6 |a Finances  |x Méthodes statistiques. 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Finance  |x Data processing  |2 fast 
650 7 |a Finance  |x Statistical methods  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
776 0 8 |i Print version:  |a Jansen, Stefan.  |t Hands-On Machine Learning for Algorithmic Trading : Design and Implement Investment Strategies Based on Smart Algorithms That Learn from Data Using Python.  |d Birmingham : Packt Publishing Ltd, ©2018  |z 9781789346411 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781789346411/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a EBSCOhost  |b EBSC  |n 1993346 
938 |a YBP Library Services  |b YANK  |n 15966519 
994 |a 92  |b IZTAP