Cargando…

MATLAB machine learning recipes : a problem-solution approach /

Harness the power of MATLAB to resolve a wide range of machine learning challenges. This book provides a series of examples of technologies critical to machine learning. Each example solves a real-world problem. All code in MATLAB Machine Learning Recipes: A Problem-Solution Approach is executable....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Paluszek, Michael (Autor), Thomas, Stephanie (Educator) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Apress, [2019]
Edición:Second edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1083763032
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 190201t20192019nyua ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d GW5XE  |d UAB  |d UKMGB  |d OCLCF  |d VT2  |d OH1  |d COO  |d UMI  |d LQU  |d C6I  |d OCL  |d OCLCQ  |d LEATE  |d UKAHL  |d OCLCQ  |d BRF  |d DCT  |d YDX  |d OCLCO  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ 
015 |a GBB928409  |2 bnb 
016 7 |a 019235640  |2 Uk 
019 |a 1084364833  |a 1091246127  |a 1103266885  |a 1104211878  |a 1105169735  |a 1110901816  |a 1122810730  |a 1129366565  |a 1153010691  |a 1156067073  |a 1156375338  |a 1160616551  |a 1162796644  |a 1179667815  |a 1192345479  |a 1204013478  |a 1206409375  |a 1229944228  |a 1237463917  |a 1240517335  |a 1240625496 
020 |a 9781484239162  |q (electronic bk.) 
020 |a 1484239164  |q (electronic bk.) 
020 |a 9781484252413  |q (print) 
020 |a 1484252411 
020 |z 9781484239155 
020 |z 1484239156 
020 |z 9781484239179  |q (print) 
020 |z 1484239172 
024 7 |a 10.1007/978-1-4842-3916-2  |2 doi 
024 8 |a 10.1007/978-1-4842-3 
029 1 |a AU@  |b 000065006399 
029 1 |a AU@  |b 000065064023 
029 1 |a AU@  |b 000065067720 
029 1 |a AU@  |b 000066232112 
029 1 |a AU@  |b 000066529201 
029 1 |a AU@  |b 000067073841 
029 1 |a AU@  |b 000067099942 
029 1 |a AU@  |b 000069010400 
029 1 |a CHNEW  |b 001084438 
029 1 |a CHVBK  |b 592046494 
029 1 |a UKMGB  |b 019235640 
035 |a (OCoLC)1083763032  |z (OCoLC)1084364833  |z (OCoLC)1091246127  |z (OCoLC)1103266885  |z (OCoLC)1104211878  |z (OCoLC)1105169735  |z (OCoLC)1110901816  |z (OCoLC)1122810730  |z (OCoLC)1129366565  |z (OCoLC)1153010691  |z (OCoLC)1156067073  |z (OCoLC)1156375338  |z (OCoLC)1160616551  |z (OCoLC)1162796644  |z (OCoLC)1179667815  |z (OCoLC)1192345479  |z (OCoLC)1204013478  |z (OCoLC)1206409375  |z (OCoLC)1229944228  |z (OCoLC)1237463917  |z (OCoLC)1240517335  |z (OCoLC)1240625496 
037 |a com.springer.onix.9781484239162  |b Springer Nature 
050 4 |a Q325.5 
072 7 |a COM  |x 000000  |2 bisacsh 
072 7 |a UYQ  |2 bicssc 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3/1  |2 23 
049 |a UAMI 
100 1 |a Paluszek, Michael,  |e author. 
245 1 0 |a MATLAB machine learning recipes :  |b a problem-solution approach /  |c Michael Paluszek and Stephanie Thomas. 
250 |a Second edition. 
264 1 |a New York :  |b Apress,  |c [2019] 
264 4 |c Ã2019 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
504 |a Includes bibliographical references and index. 
588 0 |a Vendor-supplied metadata. 
505 0 |a Introduction -- An overview of machine learning -- Representation of data for machine learning in MATLAB -- MATLAB graphics -- Kalman filters -- Adaptive control -- Fuzzy logic -- Data classification with decision trees -- Introduction to neural nets -- Classification of numbers using neural networks -- Pattern recognition with deep learning -- Neural aircraft control -- Multiple hypothesis testing -- Autonomous driving with multiple hypothesis testing -- Case-based expert systems -- A brief history of autonomous learning -- Software for machine learning. 
520 |a Harness the power of MATLAB to resolve a wide range of machine learning challenges. This book provides a series of examples of technologies critical to machine learning. Each example solves a real-world problem. All code in MATLAB Machine Learning Recipes: A Problem-Solution Approach is executable. The toolbox that the code uses provides a complete set of functions needed to implement all aspects of machine learning. Authors Michael Paluszek and Stephanie Thomas show how all of these technologies allow the reader to build sophisticated applications to solve problems with pattern recognition, autonomous driving, expert systems, and much more. You will: Learn to write code for machine learning, adaptive control and estimation using MATLAB See how these three areas complement each other Understand why these three areas are needed for robust machine learning applications Use MATLAB graphics and visualization tools for machine learning Code real world examples in MATLAB for major applications of machine learning in big data. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a MATLAB. 
630 0 7 |a MATLAB  |2 fast  |0 (OCoLC)fst01365096 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
700 1 |a Thomas, Stephanie  |c (Educator),  |e author. 
776 0 8 |i Printed edition:  |z 9781484239155 
776 0 8 |i Printed edition:  |z 9781484239179 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484239162/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35934293 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5660308 
938 |a EBSCOhost  |b EBSC  |n 2014617 
938 |a YBP Library Services  |b YANK  |n 16014155 
994 |a 92  |b IZTAP