Cargando…

Fast data architectures for streaming applications : getting answers now from data sets that never end /

Why have stream-oriented data systems become so popular, when batch-oriented systems have served big data needs for many years? In the updated edition of this report, Dean Wampler examines the rise of streaming systems for handling time-sensitive problems--such as detecting fraudulent financial acti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Wampler, Dean (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, 2018.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1083721613
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 190131t20182019caua ob 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d TOH  |d OCLCF  |d CZL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |z 9781492046813 
029 1 |a AU@  |b 000069004303 
035 |a (OCoLC)1083721613 
037 |a CL0501000021  |b Safari Books Online 
050 4 |a QA76.9.D343 
082 0 4 |a 004.654  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
100 1 |a Wampler, Dean,  |e author. 
245 1 0 |a Fast data architectures for streaming applications :  |b getting answers now from data sets that never end /  |c Dean Wampler. 
250 |a Second edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media,  |c 2018. 
264 4 |c ©2019 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed January 30, 2019). 
504 |a Includes bibliographical references. 
520 |a Why have stream-oriented data systems become so popular, when batch-oriented systems have served big data needs for many years? In the updated edition of this report, Dean Wampler examines the rise of streaming systems for handling time-sensitive problems--such as detecting fraudulent financial activity as it happens. You'll explore the characteristics of fast data architectures, along with several open source tools for implementing them. Batch processing isn't going away, but exclusive use of these systems is now a competitive disadvantage. You'll learn that, while fast data architectures using tools such as Kafka, Akka, Spark, and Flink are much harder to build, they represent the state of the art for dealing with mountains of data that require immediate attention. Learn how a basic fast data architecture works, step-by-step Examine how Kafka's data backplane combines the best abstractions of log-oriented and message queue systems for integrating components Evaluate four streaming engines, including Kafka Streams, Akka Streams, Spark, and Flink Learn which streaming engines work best for different use cases Get recommendations for making real-world streaming systems responsive, resilient, elastic, and message driven Explore an example IoT streaming application that includes telemetry ingestion and anomaly detection. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Service-oriented architecture (Computer science) 
650 0 |a Application software  |x Development. 
650 0 |a Data mining. 
650 0 |a Big data. 
650 2 |a Data Mining 
650 6 |a Architecture orientée service (Informatique) 
650 6 |a Logiciels d'application  |x Développement. 
650 6 |a Exploration de données (Informatique) 
650 6 |a Données volumineuses. 
650 7 |a Application software  |x Development  |2 fast 
650 7 |a Big data  |2 fast 
650 7 |a Data mining  |2 fast 
650 7 |a Service-oriented architecture (Computer science)  |2 fast 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781492046820/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP