Cargando…

PyTorch recipes : a problem-solution approach /

Get up to speed with the deep learning concepts of Pytorch using a problem-solution approach. Starting with an introduction to PyTorch, you'll get familiarized with tensors, a type of data structure used to calculate arithmetic operations and also learn how they operate. You will then take a lo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mishra, Pradeepta (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [California] : Apress, [2019]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1083641773
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 190130s2019 cau o 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d YDX  |d GW5XE  |d UAB  |d OCLCF  |d UKMGB  |d LEAUB  |d UMI  |d OH1  |d TEFOD  |d VT2  |d LQU  |d C6I  |d OCLCQ  |d LEATE  |d UKAHL  |d OCLCQ  |d DCT  |d NLW  |d OCLCO  |d OCLCQ  |d OCLCO  |d NZAUC  |d OCLCQ 
015 |a GBB928190  |2 bnb 
016 7 |a 019229102  |2 Uk 
019 |a 1084370953  |a 1084716686  |a 1086465745  |a 1090069405  |a 1103281989  |a 1105175322  |a 1122814938  |a 1129357713  |a 1152994208  |a 1162759325  |a 1192347776  |a 1203985506  |a 1240530604 
020 |a 9781484242582  |q (electronic bk.) 
020 |a 1484242580  |q (electronic bk.) 
020 |a 9781484242599  |q (print) 
020 |a 1484242599 
020 |z 9781484242575 
020 |z 1484242572 
024 7 |a 10.1007/978-1-4842-4258-2  |2 doi 
024 8 |a 10.1007/978-1-4842-4 
029 1 |a AU@  |b 000065006302 
029 1 |a AU@  |b 000067497034 
029 1 |a CHNEW  |b 001074122 
029 1 |a CHVBK  |b 57946931X 
029 1 |a UKMGB  |b 019229102 
029 1 |a AU@  |b 000073929338 
035 |a (OCoLC)1083641773  |z (OCoLC)1084370953  |z (OCoLC)1084716686  |z (OCoLC)1086465745  |z (OCoLC)1090069405  |z (OCoLC)1103281989  |z (OCoLC)1105175322  |z (OCoLC)1122814938  |z (OCoLC)1129357713  |z (OCoLC)1152994208  |z (OCoLC)1162759325  |z (OCoLC)1192347776  |z (OCoLC)1203985506  |z (OCoLC)1240530604 
037 |a com.springer.onix.9781484242582  |b Springer Nature 
037 |a 8D5A646D-30CC-4EB4-96E5-97EA59625C01  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.87 
072 7 |a COM  |x 000000  |2 bisacsh 
072 7 |a UMX  |2 bicssc 
072 7 |a UMX  |2 thema 
082 0 4 |a 006.3/2  |2 23 
049 |a UAMI 
100 1 |a Mishra, Pradeepta,  |e author. 
245 1 0 |a PyTorch recipes :  |b a problem-solution approach /  |c Pradeepta Mishra. 
264 1 |a [California] :  |b Apress,  |c [2019] 
264 4 |c ©2019 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
588 |a Online resource; title from PDF title page (EBSCO, viewed January 31, 2019). 
500 |a Includes index. 
505 0 |a Introduction to PyTorch, Tensors, and Tensor operations -- Probability distributions using PyTorch -- CNN and RNN using PyTorch -- Introduction to neural networks using PyTorch -- Supervised learning using PyTorch -- Fine-tuning deep learning models using PyTorch -- Natural language processing using PyTorch. 
520 |a Get up to speed with the deep learning concepts of Pytorch using a problem-solution approach. Starting with an introduction to PyTorch, you'll get familiarized with tensors, a type of data structure used to calculate arithmetic operations and also learn how they operate. You will then take a look at probability distributions using PyTorch and get acquainted with its concepts. Further you will dive into transformations and graph computations with PyTorch. Along the way you will take a look at common issues faced with neural network implementation and tensor differentiation, and get the best solutions for them. Moving on to algorithms; you will learn how PyTorch works with supervised and unsupervised algorithms. You will see how convolutional neural networks, deep neural networks, and recurrent neural networks work using PyTorch. In conclusion you will get acquainted with natural language processing and text processing using PyTorch. You will: Master tensor operations for dynamic graph-based calculations using PyTorch Create PyTorch transformations and graph computations for neural networks Carry out supervised and unsupervised learning using PyTorch Work with deep learning algorithms such as CNN and RNN Build LSTM models in PyTorch Use PyTorch for text processing. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Neural networks (Computer science) 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 2 |a Neural Networks, Computer 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Apprentissage automatique. 
650 6 |a Python (Langage de programmation) 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
776 0 8 |i Print version:  |z 1484242572  |z 9781484242575  |w (OCoLC)1056741289 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484242582/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35934296 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5651746 
938 |a EBSCOhost  |b EBSC  |n 2012498 
938 |a YBP Library Services  |b YANK  |n 16014156 
994 |a 92  |b IZTAP