Cargando…

Serving machine learning models : a guide to architecture, stream processing engines, and frameworks /

Model serving is a critical but often underappreciated aspect of machine learning. Once you have built a model using your training data set, you need to packageand deploy (i.e., serve) it. It's a surprisingly complex task, in part because modeltraining is usually handled by data scientists, and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lublinsky, Boris (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, [2017]
Edición:First edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1082143751
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 190114s2017 caua o 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d G3B  |d STF  |d MERER  |d OCLCF  |d OCLCQ  |d CZL  |d OCLCQ  |d OCLCO  |d OCLCQ 
020 |z 9781492024088 
029 1 |a AU@  |b 000069004322 
035 |a (OCoLC)1082143751 
037 |a CL0501000017  |b Safari Books Online 
050 4 |a Q325.5 
049 |a UAMI 
100 1 |a Lublinsky, Boris,  |e author. 
245 1 0 |a Serving machine learning models :  |b a guide to architecture, stream processing engines, and frameworks /  |c Boris Lublinsky. 
250 |a First edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media,  |c [2017] 
264 4 |c Ã2017 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed January 10, 2019). 
520 |a Model serving is a critical but often underappreciated aspect of machine learning. Once you have built a model using your training data set, you need to packageand deploy (i.e., serve) it. It's a surprisingly complex task, in part because modeltraining is usually handled by data scientists, and model serving is the domain ofsoftware engineers. These two groups have different functions, concerns, andtools, so the handoff can be tricky. Plus, machine learning is a hot and fast-growing field, spawning a slew of new tools that require software engineers tocreate new model serving frameworks. This book delves into the theory and practice of serving machine learning modelsin streaming applications. It proposes an overall architecture that implementscontrolled streams of both data and models that enables not only real-time modelserving, as part of processing input streams, but also real-time model updating. Italso covers: Step-by- step options for exporting models in tensorflow and PMMLformats. Implementation of model serving leveraging stream processing enginesand frameworks including Apache Flink, Apache Spark streaming, ApacheBeam, Apache Kafka streams, and Akka streams. Monitoring approaches for model serving implementations. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 0 |a Business enterprises  |x Technological innovations. 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 6 |a Entreprises  |x Innovations. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Business enterprises  |x Technological innovations.  |2 fast  |0 (OCoLC)fst00842646 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781492024095/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP