Cargando…

Introduction to GPUs for data analytics : advances and applications for accelerated computing /

Moore's law has finally run out of steam for CPUs. The number of x86 cores that can be placed cost-effectively on a single chip has reached a practical limit, making higher densities prohibitively expensive for most applications. Fortunately, for big data analytics, machine learning, and databa...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Mizell, Eric (Autor), Biery, Roger (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, [2017]
Edición:First edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1082143671
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 190114s2017 caua o 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d UMI  |d G3B  |d STF  |d MERER  |d OCLCF  |d OCLCQ  |d CZL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |z 9781491998038 
029 1 |a AU@  |b 000069004323 
035 |a (OCoLC)1082143671 
037 |a CL0501000017  |b Safari Books Online 
050 4 |a T385 
049 |a UAMI 
100 1 |a Mizell, Eric,  |e author. 
245 1 0 |a Introduction to GPUs for data analytics :  |b advances and applications for accelerated computing /  |c Eric Mizell and Roger Biery. 
246 3 |a Introduction to Graphics processing units for data analytics 
250 |a First edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media,  |c [2017] 
264 4 |c ©2017 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed January 9, 2019). 
520 |a Moore's law has finally run out of steam for CPUs. The number of x86 cores that can be placed cost-effectively on a single chip has reached a practical limit, making higher densities prohibitively expensive for most applications. Fortunately, for big data analytics, machine learning, and database applications, a more capable and cost-effective alternative for scaling compute performance is already available: the graphics processing unit, or GPU. In this report, executives at Kinetica and Sierra Communications explain how incorporating GPUs is ideal for keeping pace with the relentless growth in streaming, complex, and large data confronting organizations today. Technology professionals, business analysts, and data scientists will learn how their organizations can begin implementing GPU-accelerated solutions either on premise or in the cloud. This report explores: How GPUs supplement CPUs to enable continued price/performance gains The many database and data analytics applications that can benefit from GPU acceleration Why GPU databases with user-defined functions (UDFs) can simplify and unify the machine learning/deep learning pipeline How GPU-accelerated databases can process streaming data from the Internet of Things and other sources in real time The performance advantage of GPU databases in demanding geospatial analytics applications How cognitive computing--the most compute-intensive application currently imaginable--is now within reach, using GPUs. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Graphics processing units  |x Programming. 
650 0 |a Real-time data processing. 
650 0 |a Machine learning. 
650 0 |a Big data. 
650 6 |a Processeurs graphiques  |x Programmation. 
650 6 |a Temps réel (Informatique) 
650 6 |a Apprentissage automatique. 
650 6 |a Données volumineuses. 
650 7 |a Big data  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Real-time data processing  |2 fast 
700 1 |a Biery, Roger,  |e author. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781491998045/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP