Cargando…

Machine learning logistics : model management in the real world /

To succeed with machine learning or deep learning, you must handle the logistics well. Simply put, you need an effective management system for overall data flow and the evaluation and deployment of multiple models as they move from prototype to production. Without that, your project will most likely...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Dunning, Ted, 1956- (Autor), Friedman, B. Ellen (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, [2017]
Edición:First edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1082143630
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 190114s2017 caua ob 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d G3B  |d STF  |d MERER  |d OCLCF  |d OCLCQ  |d OCLCO  |d CZL  |d OCLCQ  |d OCLCO  |d OCLCQ 
020 |z 9781491997611 
029 1 |a AU@  |b 000068970507 
035 |a (OCoLC)1082143630 
037 |a CL0501000017  |b Safari Books Online 
050 4 |a Q325.5 
049 |a UAMI 
100 1 |a Dunning, Ted,  |d 1956-  |e author. 
245 1 0 |a Machine learning logistics :  |b model management in the real world /  |c Ted Dunning and Ellen Friedman. 
250 |a First edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media,  |c [2017] 
264 4 |c Ã2017 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed January 9, 2019). 
504 |a Includes bibliographical references. 
520 |a To succeed with machine learning or deep learning, you must handle the logistics well. Simply put, you need an effective management system for overall data flow and the evaluation and deployment of multiple models as they move from prototype to production. Without that, your project will most likely fail. This report examines what you need for effective data and model management in real-world settings, including globally distributed cloud or on-premises systems. Authors Ted Dunning and Ellen Friedman introduce the rendezvous architecture, an innovative design to help you handle machine-learning logistics. This approach not only paves the way to successful long-term management, it also frees up your time and effort to focus on the machine learning process itself and on how to take action on results. This report provides a basic, non-technical view of what makes the approach work, as well as in-depth technical details. The report is ideal for data scientists, architects, developers, ops teams, and project managers, whether your team is planning to build a machine learning system, or currently has one underway. You will learn: The issues in machine learning logistics you need to consider when designing and implementing your system How the rendezvous architecture leverages streaming data, provides hot hand-off of new models, and collects diagnostic data Practical tips for comparing live models, including the role of decoys, canaries and the t-digest Best practices for maintaining performance after deployment. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Information technology  |x Management. 
650 0 |a Business enterprises  |x Data processing  |x Management. 
650 6 |a Apprentissage automatique. 
650 6 |a Technologie de l'information  |x Gestion. 
650 6 |a Entreprises  |x Informatique  |x Gestion. 
650 7 |a Business enterprises  |x Data processing  |x Management.  |2 fast  |0 (OCoLC)fst00842544 
650 7 |a Information technology  |x Management.  |2 fast  |0 (OCoLC)fst00973112 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
700 1 |a Friedman, B. Ellen,  |e author. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781491997628/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP