|
|
|
|
LEADER |
00000cgm a2200000 i 4500 |
001 |
OR_on1081335487 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o c |
007 |
cr cna|||||||| |
007 |
vz czazuu |
008 |
190110s2018 xx 000 o vleng d |
040 |
|
|
|a UMI
|b eng
|e rda
|e pn
|c UMI
|d OCLCF
|d OTZ
|d TOH
|d OCLCO
|d DST
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1107430300
|a 1232116359
|a 1235775572
|a 1300572069
|a 1303302705
|a 1305888066
|
020 |
|
|
|a 1789953723
|
020 |
|
|
|a 9781789953725
|
020 |
|
|
|z 9781789953725
|
024 |
8 |
|
|a 9781789953725
|
029 |
1 |
|
|a AU@
|b 000066235452
|
029 |
1 |
|
|a AU@
|b 000065070690
|
035 |
|
|
|a (OCoLC)1081335487
|z (OCoLC)1107430300
|z (OCoLC)1232116359
|z (OCoLC)1235775572
|z (OCoLC)1300572069
|z (OCoLC)1303302705
|z (OCoLC)1305888066
|
037 |
|
|
|a CL0501000016
|b Safari Books Online
|
050 |
|
4 |
|a QA76.73.P98
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Ng, Anthony,
|e speaker.
|
245 |
1 |
4 |
|a The complete machine learning cource with Python /
|c Anthony NG, Rob Percival.
|
264 |
|
1 |
|a [Place of publication not identified] :
|b Packt Publishing,
|c 2018.
|
300 |
|
|
|a 1 online resource (1 streaming video file (18 hr., 22 min., 46 sec.))
|
336 |
|
|
|a two-dimensional moving image
|b tdi
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
337 |
|
|
|a video
|b v
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a video file
|
500 |
|
|
|a Title from resource description page (Safari, viewed January 8, 2019).
|
511 |
0 |
|
|a Presenter, Anthony NG.
|
520 |
|
|
|a "Inside the course, you'll learn how to: set up a Python development environment correctly; gain complete machine learning toolsets to tackle most real-world problems; understand the various regression, classification and other ml algorithms performance metrics such as R-squared, MSE, accuracy, confusion matrix, prevision, recall, etc. and when to use them; combine multiple models with by bagging, boosting or stacking; make use to unsupervised Machine Learning (ML) algorithms such as Hierarchical clustering, k-means clustering etc. to understand your data; develop in Jupyter (IPython) notebook, Spyder and various IDE; communicate visually and effectively with Matplotlib and Seaborn; engineer new features to improve algorithm predictions; make use of train/test, K-fold and Stratified K-fold cross-validation to select the correct model and predict model perform with unseen data; use SVM for handwriting recognition, and classification problems in general; use decision trees to predict staff attrition; apply the association rule to retail shopping datasets."--Resource description page
|
542 |
|
|
|f Packt Publishing
|g 2018
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Python (Computer program language)
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
6 |
|a Python (Langage de programmation)
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
7 |
|a Machine learning.
|2 fast
|0 (OCoLC)fst01004795
|
650 |
|
7 |
|a Python (Computer program language)
|2 fast
|0 (OCoLC)fst01084736
|
655 |
|
4 |
|a Electronic videos.
|
700 |
1 |
|
|a Percival, Rob,
|e author.
|
776 |
0 |
|
|z 1789953723
|
856 |
4 |
0 |
|u https://learning.oreilly.com/videos/~/9781789953725/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
994 |
|
|
|a 92
|b IZTAP
|