Cargando…

Development workflows for data scientists /

Data science teams often borrow best practices from software development, but since the product of a data science project is insight, not code, software development workflows are not a perfect fit. How can data scientists create workflows tailored to their needs? Through interviews with several data...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Byrne, Ciara (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, [2017]
Edición:First edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1081175788
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 190108s2017 caua ob 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d G3B  |d STF  |d MERER  |d OCLCF  |d OCLCQ  |d CEF  |d C6I  |d OCLCQ  |d OCLCO  |d KSU  |d OCLCQ 
020 |z 9781491983324 
029 1 |a AU@  |b 000065066254 
035 |a (OCoLC)1081175788 
037 |a CL0501000014  |b Safari Books Online 
050 4 |a HD62.17 
049 |a UAMI 
100 1 |a Byrne, Ciara,  |e author. 
245 1 0 |a Development workflows for data scientists /  |c Ciara Byrne. 
250 |a First edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media,  |c [2017] 
264 4 |c ©2017 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed January 3, 2019). 
504 |a Includes bibliographical references. 
520 |a Data science teams often borrow best practices from software development, but since the product of a data science project is insight, not code, software development workflows are not a perfect fit. How can data scientists create workflows tailored to their needs? Through interviews with several data-driven organizations, this practical report reveals how data science teams are improving the way they define, enforce, and automate a development workflow. Data science workflows differ from team to team because their tasks, goals, and skills vary so much. In this report, author Ciara Byrne talked to teams from BinaryEdge, Airbnb, GitHub, Scotiabank, Fast Forward Labs, Datascope, and others about their approaches to the data science process, including their procedures for: Defining team structure and roles Asking interesting questions Examining previous work Collecting, exploring, and modeling data Testing, documenting, and deploying code to production Communicating the results With this report, you'll also examine a complete data science workflow developed by the team from Swiss cybersecurity firm BinaryEdge that includes steps for preliminary data analysis, exploratory data analysis, knowledge discovery, and visualization. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Workflow  |x Management  |x Computer programs. 
650 0 |a Big data. 
650 0 |a Computer software  |x Development. 
650 0 |a Electronic data processing  |x Management. 
650 0 |a Information visualization. 
650 6 |a Données volumineuses. 
650 6 |a Visualisation de l'information. 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Computer software  |x Development.  |2 fast  |0 (OCoLC)fst00872537 
650 7 |a Electronic data processing  |x Management.  |2 fast  |0 (OCoLC)fst00907027 
650 7 |a Information visualization.  |2 fast  |0 (OCoLC)fst00973185 
650 7 |a Workflow  |x Management  |x Computer programs.  |2 fast  |0 (OCoLC)fst01905199 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781492049319/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP