Python for data mining quick syntax reference /
Learn how to use Python and its structures, how to install Python, and which tools are best suited for data analyst work. This book provides you with a handy reference and tutorial on topics ranging from basic Python concepts through to data mining, manipulating and importing datasets, and data anal...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Apress,
[2018]
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Intro; Table of Contents; About the Author; About the Technical Reviewer; Introduction; Chapter 1: Getting Started; Installing Python; Editor and IDEs; Differences between Python2 and Python3; Work Directory; Using a Terminal; Summary; Chapter 2: Introductory Notes; Objects in Python; Reserved Terms for the System; Entering Comments in the Code; Types of Data; File Format; Operators; Mathematical Operators; Comparison and Membership Operators; Bitwise Operators; Assignment Operators; Operator Order; Indentation; Quotation Marks; Summary; Chapter 3: Basic Objects and Structures; Numbers
- Container ObjectsTuples; Lists; Dictionaries; Sets; Strings; Files; Immutability; Converting Formats; Summary; Chapter 4: Functions; Some words about functions in Python; Some Predefined Built-in Functions; Obtain Function Information; Create Your Own Functions; Save and run Your Own Modules and Files; Summary; Chapter 5: Conditional Instructions and Writing Functions; Conditional Instructions; if; if + else; elif; Loops; for; while; continue and break; Extend Functions with Conditional Instructions; map() and filter() Functions; The lambda Function; Scope; Summary
- Chapter 6: Other Basic ConceptsObject-oriented Programming; More on Objects; Classes; Inheritance; Modules; Methods; List Comprehension; Regular Expressions; User Input; Errors and Exceptions; Summary; Chapter 7: Importing Files; .csv Format; From the Web; In JSON; Other Formats; Summary; Chapter 8: pandas; Libraries for Data Mining; pandas; pandas: Series; pandas: Data Frames; pandas: Importing and Exporting Data; pandas: Data Manipulation; pandas: Missing Values; pandas: Merging Two Datasets; pandas: Basic Statistics; Summary; Chapter 9: SciPy and NumPy; SciPy; NumPy
- NumPy: Generating Random Numbers and SeedsSummary; Chapter 10: Matplotlib; Basic Plots; Pie Charts; Other Plots and Charts; Saving Plots and Charts; Selecting Plot and Chart Styles; More on Histograms; Summary; Chapter 11: Scikit-learn; What Is Machine Learning?; Import Datasets Included in Scikit-learn; Creation of Training and Testing Datasets; Preprocessing; Regression; K-Nearest Neighbors; Cross-validation; Support Vector Machine; Decision Trees; KMeans; Managing Dates; Data Sources; Index