Cargando…

Learn R for Applied Statistics : With Data Visualizations, Regressions, and Statistics.

Gain the R programming language fundamentals for doing the applied statistics useful for data exploration and analysis in data science and data mining. This book covers topics ranging from R syntax basics, descriptive statistics, and data visualizations to inferential statistics and regressions. Aft...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hui, Eric Goh Ming
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berkeley, CA : Apress L.P., 2018.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Mi 4500
001 OR_on1078561292
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 181208s2018 cau o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d CEF  |d OCLCQ  |d CHVBK  |d OCLCO  |d OCLCF  |d OCLCQ  |d UKAHL  |d TEU  |d YDX  |d UKMGB  |d UMI  |d TOH  |d LEAUB  |d ADU  |d LEATE  |d VT2  |d OCLCO  |d OCLCQ 
015 |a GBB917713  |2 bnb 
016 7 |a 019213881  |2 Uk 
019 |a 1077594130  |a 1083721672  |a 1086470488  |a 1122815399  |a 1152984601  |a 1156384489 
020 |a 9781484242001 
020 |a 1484242009 
020 |z 1484241991 
020 |z 9781484241998 
020 |a 9781484242018  |q (print) 
020 |a 1484242017 
020 |a 9781484246344  |q (print) 
020 |a 1484246349 
020 |a 1484241991 
020 |a 9781484241998 
024 7 |a 10.1007/978-1-4842-4200-1  |2 doi 
024 3 |a 9781484241998 
029 1 |a AU@  |b 000065066052 
029 1 |a CHNEW  |b 001073981 
029 1 |a CHVBK  |b 579467872 
029 1 |a AU@  |b 000065064988 
029 1 |a UKMGB  |b 019213881 
035 |a (OCoLC)1078561292  |z (OCoLC)1077594130  |z (OCoLC)1083721672  |z (OCoLC)1086470488  |z (OCoLC)1122815399  |z (OCoLC)1152984601  |z (OCoLC)1156384489 
037 |a com.springer.onix.9781484242001  |b Springer Nature 
050 4 |a QA76.7-76.73QA76.76 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
072 7 |a UMX  |2 bicssc 
072 7 |a UMX  |2 thema 
072 7 |a UMC  |2 thema 
082 0 4 |a 519.502855133  |2 23 
049 |a UAMI 
100 1 |a Hui, Eric Goh Ming. 
245 1 0 |a Learn R for Applied Statistics :  |b With Data Visualizations, Regressions, and Statistics. 
260 |a Berkeley, CA :  |b Apress L.P.,  |c 2018. 
300 |a 1 online resource (254 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
588 0 |a Print version record. 
505 0 |a Intro; Table of Contents; About the Author; About the Technical Reviewer; Acknowledgments; Introduction; Chapter 1: Introduction; What Is R?; High-Level and Low-Level Languages; What Is Statistics?; What Is Data Science?; What Is Data Mining?; Business Understanding; Data Understanding; Data Preparation; Modeling; Evaluation; Deployment; What Is Text Mining?; Data Acquisition; Text Preprocessing; Modeling; Evaluation/Validation; Applications; Natural Language Processing; Three Types of Analytics; Descriptive Analytics; Predictive Analytics; Prescriptive Analytics; Big Data; Volume; Velocity 
505 8 |a VarietyWhy R?; Conclusion; References; Chapter 2: Getting Started; What Is R?; The Integrated Development Environment; RStudio: The IDE for R; Installation of R and RStudio; Writing Scripts in R and RStudio; Conclusion; References; Chapter 3: Basic Syntax; Writing in R Console; Using the Code Editor; Adding Comments to the Code; Variables; Data Types; Vectors; Lists; Matrix; Data Frame; Logical Statements; Loops; For Loop; While Loop; Break and Next Keywords; Repeat Loop; Functions; Create Your Own Calculator; Conclusion; References; Chapter 4: Descriptive Statistics 
505 8 |a What Is Descriptive Statistics?Reading Data Files; Reading a CSV File; Writing a CSV File; Reading an Excel File; Writing an Excel File; Reading an SPSS File; Writing an SPSS File; Reading a JSON File; Basic Data Processing; Selecting Data; Sorting; Filtering; Removing Missing Values; Removing Duplicates; Some Basic Statistics Terms; Types of Data; Mode, Median, Mean; Mode; Median; Mean; Interquartile Range, Variance, Standard Deviation; Range; Interquartile Range; Variance; Standard Deviation; Normal Distribution; Modality; Skewness; Binomial Distribution; The summary() and str() Functions 
505 8 |a ConclusionReferences; Chapter 5: Data Visualizations; What Are Data Visualizations?; Bar Chart and Histogram; Line Chart and Pie Chart; Scatterplot and Boxplot; Scatterplot Matrix; Social Network Analysis Graph Basics; Using ggplot2; What Is the Grammar of Graphics?; The Setup for ggplot2; Aesthetic Mapping in ggplot2; Geometry in ggplot2; Labels in ggplot2; Themes in ggplot2; ggplot2 Common Charts; Bar Chart; Histogram; Density Plot; Scatterplot; Line chart; Boxplot; Interactive Charts with Plotly and ggplot2; Conclusion; References; Chapter 6: Inferential Statistics and Regressions 
505 8 |a What Are Inferential Statistics and Regressions?apply(), lapply(), sapply(); Sampling; Simple Random Sampling; Stratified Sampling; Cluster Sampling; Correlations; Covariance; Hypothesis Testing and P-Value; T-Test; Types of T-Tests; Assumptions of T-Tests; Type I and Type II Errors; One-Sample T-Test; Two-Sample Independent T-Test; Two-Sample Dependent T-Test; Chi-Square Test; Goodness of Fit Test; Contingency Test; ANOVA; Grand Mean; Hypothesis; Assumptions; Between Group Variability; Within Group Variability; One-Way ANOVA; Two-Way ANOVA; MANOVA; Nonparametric Test 
500 |a Wilcoxon Signed Rank Test 
520 |a Gain the R programming language fundamentals for doing the applied statistics useful for data exploration and analysis in data science and data mining. This book covers topics ranging from R syntax basics, descriptive statistics, and data visualizations to inferential statistics and regressions. After learning R's syntax, you will work through data visualizations such as histograms and boxplot charting, descriptive statistics, and inferential statistics such as t-test, chi-square test, ANOVA, non-parametric test, and linear regressions. Learn R for Applied Statistics is a timely skills-migration book that equips you with the R programming fundamentals and introduces you to applied statistics for data explorations. What You Will Learn Discover R, statistics, data science, data mining, and big data Master the fundamentals of R programming, including variables and arithmetic, vectors, lists, data frames, conditional statements, loops, and functions Work with descriptive statistics Create data visualizations, including bar charts, line charts, scatter plots, boxplots, histograms, and scatterplots Use inferential statistics including t-tests, chi-square tests, ANOVA, non-parametric tests, linear regressions, and multiple linear regressions Who This Book Is For Those who are interested in data science, in particular data exploration using applied statistics, and the use of R programming for data visualizations. 
504 |a Includes bibliographical references and index. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a R. 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
776 0 8 |i Print version:  |a Hui, Eric Goh Ming.  |t Learn R for Applied Statistics : With Data Visualizations, Regressions, and Statistics.  |d Berkeley, CA : Apress L.P., ©2018  |z 9781484241998 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484242001/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35787013 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5608232 
938 |a YBP Library Services  |b YANK  |n 15870064 
994 |a 92  |b IZTAP