Cargando…

Mining the social web /

Mine the rich data tucked away in popular social websites such as Twitter, Facebook, LinkedIn, and Instagram. With the third edition of this popular guide, data scientists, analysts, and programmers will learn how to glean insights from social media-including who's connecting with whom, what th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Russell, Matthew A. (Computer scientist) (Autor), Klassen, Mikhail (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, 2018.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1077769832
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 181205s2018 caua o 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d TEFOD  |d OCLCF  |d YDX  |d WAU  |d NRC  |d AU@  |d OCLCO  |d OCLCQ  |d AAA  |d OCLCO  |d OCLCQ  |d TOH  |d OCLCQ  |d OCLCO 
019 |a 1078566333  |a 1102386979 
020 |a 9781491973523  |q (electronic bk.) 
020 |a 1491973528  |q (electronic bk.) 
020 |a 9781491973509  |q (electronic bk.) 
020 |a 1491973501  |q (electronic bk.) 
020 |z 9781491985045 
020 |z 1491985046 
024 8 |a 9781491973547 
029 1 |a AU@  |b 000065313309 
029 1 |a AU@  |b 000066065808 
035 |a (OCoLC)1077769832  |z (OCoLC)1078566333  |z (OCoLC)1102386979 
037 |a E42D19A3-7C26-49D0-BAB8-0DC25C66932E  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.9.D343  |b R87 2018eb 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
049 |a UAMI 
100 1 |a Russell, Matthew A.  |c (Computer scientist),  |e author. 
245 1 0 |a Mining the social web /  |c Matthew A. Russell and Mikhail Klassen. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media,  |c 2018. 
300 |a 1 online resource (xxiv, 400 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
500 |a Includes index. 
588 |a Online resource; title from PDF title page (EBSCO, viewed December 7, 2018). 
520 |a Mine the rich data tucked away in popular social websites such as Twitter, Facebook, LinkedIn, and Instagram. With the third edition of this popular guide, data scientists, analysts, and programmers will learn how to glean insights from social media-including who's connecting with whom, what they're talking about, and where they're located-using Python code examples, Jupyter notebooks, or Docker containers. In part one, each standalone chapter focuses on one aspect of the social landscape, including each of the major social sites, as well as web pages, blogs and feeds, mailboxes, GitHub, and a newly added chapter covering Instagram. Part two provides a cookbook with two dozen bite-size recipes for solving particular issues with Twitter. Get a straightforward synopsis of the social web landscape Use Docker to easily run each chapter's example code, packaged as a Jupyter notebook Adapt and contribute to the code's open source GitHub repository Learn how to employ best-in-class Python 3 tools to slice and dice the data you collect Apply advanced mining techniques such as TFIDF, cosine similarity, collocation analysis, clique detection, and image recognition Build beautiful data visualizations with Python and JavaScript toolkits. 
542 |f Copyright © 2019 Matthew Russell, Mikhail Klassen 
505 0 |a I.A Guided Tour of the Social Web -- Prelude -- 1. Mining Twitter: Exploring Trending Topics, Discovering What People Are Talking About, and More -- 2. Mining Facebook: Analyzing Fan Pages, Examining Friendships, and More -- 3. Mining Instagram: Computer Vision, Neural Networks, Object Recognition, and Face Detection -- 4. Mining LinkedIn: Faceting Job Titles, Clustering Colleagues, and More -- 5. Mining Text Files: Computing Document Similarity, Extracting Collocations, and More -- 6. Mining Web Pages: Using Natural Language Processing to Understand Human Language, Summarize Blog Posts, and More -- 7. Mining Mailboxes: Analyzing Who's Talking to Whom About What, How Often, and More -- 8. Mining GitHub: Inspecting Software Collaboration Habits, Building Interest Graphs, and More -- II. Twitter Cookbook -- 9. Twitter Cookbook -- III. Appendixes -- A. Information About This Book's Virtual Machine Experience -- B. OAuth Primer -- C. Python and Jupyter Notebook Tips and Tricks. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Data mining. 
650 0 |a Online social networks. 
650 2 |a Data Mining 
650 6 |a Exploration de données (Informatique) 
650 6 |a Réseaux sociaux (Internet) 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Data mining  |2 fast 
650 7 |a Online social networks  |2 fast 
700 1 |a Klassen, Mikhail,  |e author. 
776 0 8 |i Print version:  |a Russell, Matthew A. (Computer scientist).  |t Mining the social web.  |d Sebastopol, CA : O'Reilly Media, 2018  |z 9781491985045  |z 1491985046  |w (OCoLC)987280491 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781491973547/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a EBSCOhost  |b EBSC  |n 1951213 
938 |a YBP Library Services  |b YANK  |n 15876541 
938 |a YBP Library Services  |b YANK  |n 15890224 
994 |a 92  |b IZTAP