Cargando…

Beginning data science with Python and Jupyter /

"Getting started with data science doesn't have to be an uphill battle. This step-by-step video course is ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction. Get to grips with the skills you need for entry-level data science in this hands-on P...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Villa, Chris Dalla (Orador)
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : Packt Publishing, 2018.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1076490700
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 181128s2018 xx 170 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d ERF  |d OCLCO  |d OCLCQ  |d OCLCO 
029 1 |a AU@  |b 000065070464 
029 1 |a AU@  |b 000066234571 
035 |a (OCoLC)1076490700 
037 |a CL0501000008  |b Safari Books Online 
050 4 |a Q325.5 
049 |a UAMI 
100 1 |a Villa, Chris Dalla,  |e speaker. 
245 1 0 |a Beginning data science with Python and Jupyter /  |c Chris Dalla Villa. 
264 1 |a [Place of publication not identified] :  |b Packt Publishing,  |c 2018. 
300 |a 1 online resource (1 streaming video file (2 hr., 49 min., 1 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Chris Dalla Villa. 
500 |a Title from resource description page (Safari, viewed November 26, 2018). 
520 |a "Getting started with data science doesn't have to be an uphill battle. This step-by-step video course is ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction. Get to grips with the skills you need for entry-level data science in this hands-on Python and Jupyter course. You'll learn about some of the most commonly used libraries that are part of the Anaconda distribution, and then explore machine learning models with real datasets to give you the skills and exposure you need for the real world. We'll start with understanding the basics of Jupyter and its standard features. You'll be analyzing an example of a data analytics report. After analyzing a data analytics report, next step is to implement multiple classification algorithms. We'll then show you how easy it can be to scrape and gather your own data from the open web, so that you can apply your new skills in an actionable context. Finish up by learning to visualize these data interactively."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Information visualization. 
650 0 |a Python (Computer program language) 
650 0 |a Electronic data processing. 
650 6 |a Apprentissage automatique. 
650 6 |a Visualisation de l'information. 
650 6 |a Python (Langage de programmation) 
650 7 |a Electronic data processing.  |2 fast  |0 (OCoLC)fst00906956 
650 7 |a Information visualization.  |2 fast  |0 (OCoLC)fst00973185 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
655 4 |a Electronic videos. 
856 4 0 |u https://learning.oreilly.com/videos/~/9781789532449/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP