Cargando…

Data analysis and visualization using Python : analyze data to create visualizations for BI systems /

Look at Python from a data science point of view and learn proven techniques for data visualization as used in making critical business decisions.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Embarak, Ossama (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Berkeley, CA] : Apress, [2018]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1076269115
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 181126s2018 caua o 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d GW5XE  |d YDX  |d OCLCF  |d AAA  |d UKMGB  |d UMI  |d STF  |d UKAHL  |d COO  |d C6I  |d OCLCQ  |d SRU  |d UPM  |d LEAUB  |d ADU  |d VT2  |d VFL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d FTB 
015 |a GBB907476  |2 bnb 
015 |a GBB917440  |2 bnb 
016 7 |a 019198528  |2 Uk 
019 |a 1076238691  |a 1080599036  |a 1083130731  |a 1192339572  |a 1300661352 
020 |a 9781484241097  |q electronic book 
020 |a 1484241096  |q electronic book 
020 |z 9781484241103  |q print 
020 |z 148424110X  |q print 
020 |z 9781484246528  |q print 
020 |z 1484246527  |q print 
020 |z 9781484241080  |q print 
020 |z 1484241088  |q print 
024 7 |a 10.1007/978-1-4842-4109-7  |2 doi 
029 1 |a AU@  |b 000064511104 
029 1 |a AU@  |b 000069023791 
029 1 |a CHNEW  |b 001073952 
029 1 |a CHVBK  |b 579467589 
029 1 |a UKMGB  |b 019198528 
029 1 |a ZWZ  |b 243041314 
035 |a (OCoLC)1076269115  |z (OCoLC)1076238691  |z (OCoLC)1080599036  |z (OCoLC)1083130731  |z (OCoLC)1192339572  |z (OCoLC)1300661352 
037 |a com.springer.onix.9781484241097  |b Springer Nature 
050 4 |a QA76.73.P98  |b E43 2018 
072 7 |a COM  |x 051360  |2 bisacsh 
072 7 |a UMX  |2 bicssc 
072 7 |a UMX  |2 thema 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Embarak, Ossama,  |e author. 
245 1 0 |a Data analysis and visualization using Python :  |b analyze data to create visualizations for BI systems /  |c Ossama Embarak. 
264 1 |a [Berkeley, CA] :  |b Apress,  |c [2018] 
300 |a 1 online resource (xx, 374 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
500 |a Includes index. 
505 0 |a Introduction to data science with Python -- The importance of data visualization in business intelligence -- Data collection structures -- File I/O processing and regular expressions -- Data gathering and cleaning -- Data exploring and analysis -- Data visualization -- Case studies. 
505 8 |a Intro; Table of Contents; About the Author; About the Technical Reviewers; Introduction; Chapter 1: Introduction to Data Science with Python; The Stages of Data Science; Why Python?; Basic Features of Python; Python Learning Resources; Python Environment and Editors; Portable Python Editors (No Installation Required); Azure Notebooks; Offline and Desktop Python Editors; The Basics of Python Programming; Basic Syntax; Lines and Indentation; Multiline Statements; Quotation Marks in Python; Multiple Statements on a Single Line; Read Data from Users; Declaring Variables and Assigning Values 
505 8 |a Multiple AssignsVariable Names and Keywords; Statements and Expressions; Basic Operators in Python; Arithmetic Operators; Relational Operators; Assign Operators; Logical Operators; Python Comments; Formatting Strings; Conversion Types; The Replacement Field, {}; The Date and Time Module; Time Module Methods; Python Calendar Module; Fundamental Python Programming Techniques; Selection Statements; Iteration Statements; The Use of Break, Continues, and Pass Statements; try and except; String Processing; String Special Operators; String Slicing and Concatenation 
505 8 |a String Conversions and Formatting SymbolsLoop Through String; Python String Functions and Methods; The in Operator; Parsing and Extracting Strings; Tabular Data and Data Formats; Python Pandas Data Science Library; A Pandas Series; A Pandas Data Frame; A Pandas Panels; Python Lambdas and the Numpy Library; The map() Function; The filter() Function; The reduce () Function; Python Numpy Package; Data Cleaning and Manipulation Techniques; Abstraction of the Series and Data Frame; Running Basic Inferential Analyses; Summary; Exercises and Answers 
505 8 |a Chapter 2: The Importance of Data Visualization in Business IntelligenceShifting from Input to Output; Why Is Data Visualization Important?; Why Do Modern Businesses Need Data Visualization?; The Future of Data Visualization; How Data Visualization Is Used for Business Decision-Making; Faster Responses; Simplicity; Easier Pattern Visualization; Team Involvement; Unify Interpretation; Introducing Data Visualization Techniques; Loading Libraries; Popular Libraries for Data Visualization in Python; Matplotlib; Seaborn; Plotly; Geoplotlib; Pandas; Introducing Plots in Python; Summary 
505 8 |a Exercises and AnswersChapter 3: Data Collection Structures; Lists; Creating Lists; Accessing Values in Lists; Adding and Updating Lists; Deleting List Elements; Basic List Operations; Indexing, Slicing, and Matrices; Built-in List Functions and Methods; List Functions; List Methods; List Sorting and Traversing; Lists and Strings; Parsing Lines; Aliasing; Dictionaries; Creating Dictionaries; Updating and Accessing Values in Dictionaries; Deleting Dictionary Elements; Built-in Dictionary Functions; Built-in Dictionary Methods; Tuples; Creating Tuples; Concatenating Tuples 
520 |a Look at Python from a data science point of view and learn proven techniques for data visualization as used in making critical business decisions. 
520 |a Look at Python from a data science point of view and learn proven techniques for data visualization as used in making critical business decisions. Starting with an introduction to data science with Python, you will take a closer look at the Python environment and get acquainted with editors such as Jupyter Notebook and Spyder. After going through a primer on Python programming, you will grasp fundamental Python programming techniques used in data science. Moving on to data visualization, you will see how it caters to modern business needs and forms a key factor in decision-making. You will also take a look at some popular data visualization libraries in Python. Shifting focus to data structures, you will learn the various aspects of data structures from a data science perspective. You will then work with file I/O and regular expressions in Python, followed by gathering and cleaning data. Moving on to exploring and analyzing data, you will look at advanced data structures in Python. Then, you will take a deep dive into data visualization techniques, going through a number of plotting systems in Python. In conclusion, you will complete a detailed case study, where you'll get a chance to revisit the concepts you've covered so far. What You Will Learn Use Python programming techniques for data science Master data collections in Python Create engaging visualizations for BI systems Deploy effective strategies for gathering and cleaning data Integrate the Seaborn and Matplotlib plotting systems Who This Book Is For Developers with basic Python programming knowledge looking to adopt key strategies for data analysis and visualizations using Python.--Provided by publisher. 
588 |a Description based on online resource; title from digital title page (viewed on June 20, 2023). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Python (Computer program language) 
650 0 |a Programming languages (Electronic computers) 
650 0 |a Data mining. 
650 0 |a Qualitative research  |x Methodology. 
650 2 |a Data Mining 
650 6 |a Python (Langage de programmation) 
650 6 |a Exploration de données (Informatique) 
650 7 |a Computer programming  |x software development.  |2 bicssc 
650 7 |a Databases.  |2 bicssc 
650 7 |a Programming & scripting languages: general.  |2 bicssc 
650 7 |a COMPUTERS  |x Programming Languages  |x Python.  |2 bisacsh 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Programming languages (Electronic computers)  |2 fast  |0 (OCoLC)fst01078704 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
650 7 |a Qualitative research  |x Methodology.  |2 fast  |0 (OCoLC)fst01923255 
776 0 8 |i Print version:  |a Embarak, Ossama.  |t Data analysis and visualization using Python.  |d [Berkeley, CA] : Apress, 2018  |z 1484241088  |z 9781484241080  |w (OCoLC)1049911139 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484241097/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35659996 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5601947 
938 |a EBSCOhost  |b EBSC  |n 1942613 
938 |a YBP Library Services  |b YANK  |n 15857252 
994 |a 92  |b IZTAP