Cargando…

Mastering predictive analytics with scikit-learn and TensorFlow : implement machine learning techniques to build advanced predictive models using Python /

Learn advanced techniques to improve the performance and quality of your predictive models Key Features Use ensemble methods to improve the performance of predictive analytics models Implement feature selection, dimensionality reduction, and cross-validation techniques Develop neural network models...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fontaine, Alan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing Ltd., 2018.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1061288995
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 181106s2018 enka o 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d UAB  |d STF  |d OCLCF  |d TOH  |d G3B  |d UKMGB  |d CZL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBC206370  |2 bnb 
016 7 |a 019078543  |2 Uk 
020 |a 9781789612240 
020 |a 1789612241 
020 |z 9781789617740 
029 1 |a UKMGB  |b 019078543 
029 1 |a AU@  |b 000069010486 
035 |a (OCoLC)1061288995 
037 |a CL0501000004  |b Safari Books Online 
050 4 |a QA76.9.D343 
082 0 4 |a 006.31  |2 22 
049 |a UAMI 
100 1 |a Fontaine, Alan,  |e author. 
245 1 0 |a Mastering predictive analytics with scikit-learn and TensorFlow :  |b implement machine learning techniques to build advanced predictive models using Python /  |c Alan Fontaine. 
264 1 |a Birmingham, UK :  |b Packt Publishing Ltd.,  |c 2018. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (viewed November 6, 2018). 
520 |a Learn advanced techniques to improve the performance and quality of your predictive models Key Features Use ensemble methods to improve the performance of predictive analytics models Implement feature selection, dimensionality reduction, and cross-validation techniques Develop neural network models and master the basics of deep learning Book Description Python is a programming language that provides a wide range of features that can be used in the field of data science. Mastering Predictive Analytics with scikit-learn and TensorFlow covers various implementations of ensemble methods, how they are used with real-world datasets, and how they improve prediction accuracy in classification and regression problems. This book starts with ensemble methods and their features. You will see that scikit-learn provides tools for choosing hyperparameters for models. As you make your way through the book, you will cover the nitty-gritty of predictive analytics and explore its features and characteristics. You will also be introduced to artificial neural networks and TensorFlow, and how it is used to create neural networks. In the final chapter, you will explore factors such as computational power, along with improvement methods and software enhancements for efficient predictive analytics. By the end of this book, you will be well-versed in using deep neural networks to solve common problems in big data analysis. What you will learn Use ensemble algorithms to obtain accurate predictions Apply dimensionality reduction techniques to combine features and build better models Choose the optimal hyperparameters using cross-validation Implement different techniques to solve current challenges in the predictive analytics domain Understand various elements of deep neural network (DNN) models Implement neural networks to solve both classification and regression problems Who this book is for Mastering Predictive Analytics with scikit-learn and TensorFlow is for data analysts, software engineers, and machine learning developers who are interested in implementing advanced predictive analytics using Python. Business intelligence experts will also find this book indispensable as it will teach them how to progress from basic predictive models to building advanced models and producing more accurate predictions. Prior knowledge of Python and familiarity with predictive analytics concepts are assumed. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Data mining. 
650 0 |a Big data. 
650 0 |a Decision making  |x Data processing. 
650 0 |a Application software  |x Development. 
650 0 |a Python (Computer program language) 
650 2 |a Data Mining 
650 6 |a Exploration de données (Informatique) 
650 6 |a Données volumineuses. 
650 6 |a Prise de décision  |x Informatique. 
650 6 |a Logiciels d'application  |x Développement. 
650 6 |a Python (Langage de programmation) 
650 7 |a Information theory.  |2 bicssc 
650 7 |a Computer modelling & simulation.  |2 bicssc 
650 7 |a Natural language & machine translation.  |2 bicssc 
650 7 |a Information architecture.  |2 bicssc 
650 7 |a Computers.  |x Natural Language Processing.  |2 bisacsh 
650 7 |a Computers.  |x Computer Simulation.  |2 bisacsh 
650 7 |a Computers.  |x Information Theory.  |2 bisacsh 
650 7 |a Application software  |x Development  |2 fast 
650 7 |a Big data  |2 fast 
650 7 |a Data mining  |2 fast 
650 7 |a Decision making  |x Data processing  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781789617740/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP