Cargando…

Model identification and data analysis /

This book is about constructing models from experimental data. It covers a range of topics, from statistical data prediction to Kalman filtering, from black-box model identification to parameter estimation, from spectral analysis to predictive control. Written for graduate students, this textbook of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bittanti, Sergio (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ : John Wiley & Sons, Inc., 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1057242269
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 181009t20192019njua ob 001 0 eng
010 |a  2018047956 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d OCLCO  |d OCLCF  |d N$T  |d YDX  |d EBLCP  |d DG1  |d UKMGB  |d YDX  |d RECBK  |d DG1  |d UKAHL  |d OCLCQ  |d DG1  |d VT2  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCQ 
015 |a GBB944870  |2 bnb 
016 7 |a 019284371  |2 Uk 
019 |a 1100434149  |a 1124387479 
020 |a 9781119546313  |q (electronic book) 
020 |a 1119546311  |q (electronic book) 
020 |a 9781119546412  |q (electronic book) 
020 |a 1119546419  |q (electronic book) 
020 |a 9781119546405  |q (electronic book) 
020 |a 1119546400  |q (electronic book) 
020 |z 9781119546368  |q (hardcover) 
029 1 |a AU@  |b 000064319369 
029 1 |a AU@  |b 000067094225 
029 1 |a CHNEW  |b 001048767 
029 1 |a CHVBK  |b 565571664 
029 1 |a UKMGB  |b 019284371 
035 |a (OCoLC)1057242269  |z (OCoLC)1100434149  |z (OCoLC)1124387479 
037 |a 9781119546313  |b Wiley 
042 |a pcc 
050 1 4 |a TA342  |b .B58 2019 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 0 |a 511/.8  |2 23 
049 |a UAMI 
100 1 |a Bittanti, Sergio,  |e author. 
245 1 0 |a Model identification and data analysis /  |c Sergio Bittanti, Politecnico di Milano, Milan, Italy. 
264 1 |a Hoboken, NJ :  |b John Wiley & Sons, Inc.,  |c 2019. 
264 4 |c ©2019 
300 |a 1 online resource (xvi, 399 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a Cover; Title Page; Copyright; Contents; Introduction; Acknowledgments; Chapter 1 Stationary Processes and Time Series; 1.1 Introduction; 1.2 The Prediction Problem; 1.3 Random Variable; 1.4 Random Vector; 1.4.1 Covariance Coefficient; 1.5 Stationary Process; 1.6 White Process; 1.7 MA Process; 1.8 AR Process; 1.8.1 Study of the AR(1) Process; 1.9 Yule-Walker Equations; 1.9.1 Yule-Walker Equations for the AR(1) Process; 1.9.2 Yule-Walker Equations for the AR(2) and AR(n) Process; 1.10 ARMA Process; 1.11 Spectrum of a Stationary Process; 1.11.1 Spectrum Properties 
505 8 |a 1.11.1.0 Proof of the Spectrum Properties1.11.2 Spectral Diagram; 1.11.3 Maximum Frequency in Discrete Time; 1.11.4 White Noise Spectrum; 1.11.5 Complex Spectrum; 1.12 ARMA Model: Stability Test and Variance Computation; 1.12.1 Ruzicka Stability Criterion; 1.12.2 Variance of an ARMA Process; 1.13 Fundamental Theorem of Spectral Analysis; 1.14 Spectrum Drawing; 1.15 Proof of the Fundamental Theorem of Spectral Analysis; 1.16 Representations of a Stationary Process; Chapter 2 Estimation of Process Characteristics; 2.1 Introduction; 2.2 General Properties of the Covariance Function 
505 8 |a 2.3 Covariance Function of ARMA Processes2.4 Estimation of the Mean; 2.5 Estimation of the Covariance Function; 2.6 Estimation of the Spectrum; 2.7 Whiteness Test; Chapter 3 Prediction; 3.1 Introduction; 3.2 Fake Predictor; 3.2.1 Practical Determination of the Fake Predictor; 3.3 Spectral Factorization; 3.4 Whitening Filter; 3.5 Optimal Predictor from Data; 3.6 Prediction of an ARMA Process; 3.7 ARMAX Process; 3.8 Prediction of an ARMAX Process; Chapter 4 Model Identification; 4.1 Introduction; 4.2 Setting the Identification Problem; 4.2.1 Learning from Maxwell 
505 8 |a 4.2.2 A General Identification Problem4.3 Static Modeling; 4.3.1 Learning from Gauss; 4.3.2 Least Squares Made Simple; 4.3.2.1 Trend Search; 4.3.2.2 Seasonality Search; 4.3.2.3 Linear Regression; 4.3.3 Estimating the Expansion of the Universe; 4.4 Dynamic Modeling; 4.5 External Representation Models; 4.5.1 Box and Jenkins Model; 4.5.2 ARX and AR Models; 4.5.3 ARMAX and ARMA Models; 4.5.4 Multivariable Models; 4.6 Internal Representation Models; 4.7 The Model Identification Process; 4.8 The Predictive Approach; 4.9 Models in Predictive Form; 4.9.1 Box and Jenkins Model; 4.9.2 ARX and AR Models 
505 8 |a 4.9.3 ARMAX and ARMA ModelsChapter 5 Identification of Input-Output Models; 5.1 Introduction; 5.2 Estimating AR and ARX Models: The Least Squares Method; 5.3 Identifiability; 5.3.1 The R Matrix for the ARX(1, 1) Model; 5.3.2 The R Matrix for a General ARX Model; 5.4 Estimating ARMA and ARMAX Models; 5.4.1 Computing the Gradient and the Hessian from Data; 5.5 Asymptotic Analysis; 5.5.1 Data Generation System Within the Class of Models; 5.5.2 Data Generation System Outside the Class of Models; 5.5.2.1 Simulation Trial; 5.5.3 General Considerations on the Asymptotics of Predictive Identification 
588 0 |a Online resource; title from digital title page (viewed on April 08, 2019). 
520 |a This book is about constructing models from experimental data. It covers a range of topics, from statistical data prediction to Kalman filtering, from black-box model identification to parameter estimation, from spectral analysis to predictive control. Written for graduate students, this textbook offers an approach that has proven successful throughout the many years during which its author has taught these topics at his University. The book: -Contains accessible methods explained step-by-step in simple terms -Offers an essential tool useful in a variety of fields, especially engineering, statistics, and mathematics -Includes an overview on random variables and stationary processes, as well as an introduction to discrete time models and matrix analysis -Incorporates historical commentaries to put into perspective the developments that have brought the discipline to its current state -Provides many examples and solved problems to complement the presentation and facilitate comprehension of the techniques presented. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Mathematical models. 
650 0 |a Quantitative research. 
650 0 |a System identification. 
650 6 |a Modèles mathématiques. 
650 6 |a Recherche quantitative. 
650 6 |a Identification des systèmes. 
650 7 |a mathematical models.  |2 aat 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Mathematical models.  |2 fast  |0 (OCoLC)fst01012085 
650 7 |a Quantitative research.  |2 fast  |0 (OCoLC)fst01742283 
650 7 |a System identification.  |2 fast  |0 (OCoLC)fst01141418 
776 0 8 |i Print version:  |a Bittanti, Sergio.  |t Model identification and data analysis.  |d Hoboken, NJ, USA : Wiley, [2019]  |z 9781119546368  |w (DLC) 2018046965 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781119546368/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35216616 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5731871 
938 |a EBSCOhost  |b EBSC  |n 2089004 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00757341 
938 |a YBP Library Services  |b YANK  |n 16142909 
938 |a YBP Library Services  |b YANK  |n 16122084 
994 |a 92  |b IZTAP