Machine learning algorithms : popular algorithms for data science and machine learning /
Machine learning has gained tremendous popularity for its powerful and fast predictions with large datasets. However, the true forces behind its powerful output are the complex algorithms involving substantial statistical analysis that churn large datasets and generate substantial insight. This seco...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Birmingham, UK :
Packt Publishing,
2018.
|
Edición: | Second edition. |
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Machine learning algorithms : popular algorithms for data science and machine learning
- Dedication
- Packt Upsell
- Contributors
- Table of Contents
- Preface
- Chapter 1: A Gentle Introduction to Machine Learning
- Chapter 2: Important Elements in Machine Learning
- Chapter 3: Feature Selection and Feature Engineering
- Chapter 4: Regression Algorithms
- Chapter 5: Linear Classification Algorithms
- Chapter 6: Naive Bayes and Discriminant Analysis
- Chapter 7: Support Vector Machines
- Chapter 8: Decision Trees and Ensemble Learning
- Chapter 9: Clustering Fundamentals
- Chapter 10: Advanced Clustering
- Chapter 11: Hierarchical Clustering
- Chapter 12: Introducing Recommendation Systems
- Chapter 13: Introducing Natural Language Processing
- Chapter 14: Topic Modeling and Sentiment Analysis in NLP
- Chapter 15: Introducing Neural Networks
- Chapter 16: Advanced Deep Learning Models
- Chapter 17: Creating a Machine Learning Architecture
- Other Books You May Enjoy
- Index.