Cargando…

Hands-on transfer learning with Python : implement advanced deep learning and neural network models using TensorFlow and Keras /

The purpose of this book is two-fold, we focus on detailed coverage of deep learning and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is on real-world examples and research problems using TensorFlow, Keras and Python ecosyst...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Sarkar, Dipanjan (Autor), Bali, Raghav (Autor), Ghosh, Tamoghna (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2018.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1055555784
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 181003s2018 enka o 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d N$T  |d TEFOD  |d N$T  |d TOH  |d CEF  |d OCLCF  |d G3B  |d STF  |d UAB  |d YDX  |d OCLCQ  |d OCLCO  |d AAA  |d OCLCQ  |d OCLCO 
019 |a 1101634827 
020 |a 9781788839051  |q (electronic bk.) 
020 |a 1788839056  |q (electronic bk.) 
020 |z 9781788831307 
035 |a (OCoLC)1055555784  |z (OCoLC)1101634827 
037 |a CL0500000995  |b Safari Books Online 
037 |a 6DC658CA-4BA8-4AF6-B06C-982F1D50291B  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.73.P98 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Sarkar, Dipanjan,  |e author. 
245 1 0 |a Hands-on transfer learning with Python :  |b implement advanced deep learning and neural network models using TensorFlow and Keras /  |c Dipanjan Sarkar, Raghav Bali, Tamoghna Ghosh. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2018. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed October 1, 2018). 
505 0 |a Cover; Title Page; Copyright and Credits; Dedication; Packt Upsell; Foreword; Contributors; Table of Contents; Preface; Chapter 1: Machine Learning Fundamentals; Why ML?; Formal definition; Shallow and deep learning; ML techniques; Supervised learning; Classification; Regression; Unsupervised learning; Clustering; Dimensionality reduction; Association rule mining; Anomaly detection; CRISP-DM; Business understanding; Data understanding; Data preparation; Modeling; Evaluation; Deployment; Standard ML workflow; Data retrieval; Data preparation; Exploratory data analysis 
505 8 |a Data processing and wranglingFeature engineering and extraction; Feature scaling and selection; Modeling; Model evaluation and tuning; Model evaluation; Bias variance trade-off; Bias; Variance; Trade-off; Underfitting; Overfitting; Generalization; Model tuning; Deployment and monitoring; Exploratory data analysis; Feature extraction and engineering; Feature engineering strategies; Working with numerical data; Working with categorical data; Working with image data; Deep learning based automated feature extraction; Working with text data; Text preprocessing; Feature engineering 
505 8 |a Feature selectionSummary; Chapter 2: Deep Learning Essentials; What is deep learning?; Deep learning frameworks; Setting up a cloud-based deep learning environment with GPU support; Choosing a cloud provider; Setting up your virtual server; Configuring your virtual server; Installing and updating deep learning dependencies ; Accessing your deep learning cloud environment; Validating GPU-enablement on your deep learning environment; Setting up a robust, on-premise deep learning environment with GPU support; Neural network basics; A simple linear neuron; Gradient-based optimization 
505 8 |a The Jacobian and Hessian matricesChain rule of derivatives; Stochastic Gradient Descent; Non-linear neural units; Learning a simple non-linear unit -- logistic unit; Loss functions; Data representations; Tensor examples; Tensor operations; Multilayered neural networks; Backprop -- training deep neural networks; Challenges in neural network learning; Ill-conditioning; Local minima and saddle points ; Cliffs and exploding gradients; Initialization -- bad correspondence between the local and global structure of the objective; Inexact gradients; Initialization of model parameters 
505 8 |a Initialization heuristicsImprovements of SGD; The momentum method; Nesterov momentum; Adaptive learning rate -- separate for each connection; AdaGrad; RMSprop; Adam; Overfitting and underfitting in neural networks; Model capacity; How to avoid overfitting -- regularization; Weight-sharing; Weight-decay ; Early stopping; Dropout; Batch normalization; Do we need more data?; Hyperparameters of the neural network; Automatic hyperparameter tuning; Grid search; Summary; Chapter 3: Understanding Deep Learning Architectures; Neural network architecture; Why different architectures are needed 
520 |a The purpose of this book is two-fold, we focus on detailed coverage of deep learning and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is on real-world examples and research problems using TensorFlow, Keras and Python ecosystem with hands-on examples. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Python (Computer program language) 
650 0 |a Machine learning. 
650 0 |a Neural networks (Computer science) 
650 2 |a Neural Networks, Computer 
650 2 |a Machine Learning 
650 6 |a Python (Langage de programmation) 
650 6 |a Apprentissage automatique. 
650 6 |a Réseaux neuronaux (Informatique) 
650 7 |a COMPUTER SCIENCE  |x General.  |2 bisacsh 
650 7 |a Machine learning  |2 fast 
650 7 |a Neural networks (Computer science)  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
700 1 |a Bali, Raghav,  |e author. 
700 1 |a Ghosh, Tamoghna,  |e author. 
776 0 8 |i Print version:  |a Sarkar, Dipanjan.  |t Hands-On Transfer Learning with Python : Implement Advanced Deep Learning and Neural Network Models Using TensorFlow and Keras.  |d Birmingham : Packt Publishing Ltd, ©2018  |z 9781788831307 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781788831307/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a EBSCOhost  |b EBSC  |n 1883893 
938 |a YBP Library Services  |b YANK  |n 15684635 
994 |a 92  |b IZTAP