Cargando…

Monetizing machine learning : quickly turn Python ML ideas into web applications on the serverless cloud /

Take your Python machine learning ideas and create serverless web applications accessible by anyone with an Internet connection. Some of the most popular serverless cloud providers are covered in this book - Amazon, Microsoft, Google, and PythonAnywhere. You will work through a series of common Pyth...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Amunategui, Manuel (Autor), Roopaei, Mehdi (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [New York] : Apress, [2018]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1052766455
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 180918s2018 nyu ob 000 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d GW5XE  |d YDX  |d NLE  |d YDX  |d OCLCF  |d MOQ  |d UMI  |d UAB  |d UPM  |d UKMGB  |d OTZ  |d OH1  |d G3B  |d LVT  |d TOH  |d OCLCQ  |d STF  |d U3W  |d VT2  |d CAUOI  |d LEAUB  |d MERER  |d COO  |d UKAHL  |d LQU  |d FVL  |d LEATE  |d OCLCQ  |d OCLCO  |d LUU  |d OCLCQ  |d OCLCO 
016 7 |a 019056677  |2 Uk 
019 |a 1053863505  |a 1056626553  |a 1060594134  |a 1081230364  |a 1086542377  |a 1103253257  |a 1105181330  |a 1105707377  |a 1110904347  |a 1122813116  |a 1129358137 
020 |a 9781484238738  |q (electronic book) 
020 |a 1484238737  |q (electronic book) 
020 |a 9781484238745  |q (print) 
020 |a 1484238745 
020 |a 9781484245576  |q (print) 
020 |a 1484245571 
020 |z 9781484238721 
020 |z 1484238729 
024 7 |a 10.1007/978-1-4842-3873-8  |2 doi 
024 8 |a 10.1007/978-1-4842-3 
027 |a SPRINTER 
029 1 |a AU@  |b 000064362775 
029 1 |a AU@  |b 000065195282 
029 1 |a AU@  |b 000065209475 
029 1 |a AU@  |b 000067496489 
029 1 |a CHNEW  |b 001073805 
029 1 |a CHVBK  |b 579466094 
029 1 |a UKMGB  |b 019056677 
035 |a (OCoLC)1052766455  |z (OCoLC)1053863505  |z (OCoLC)1056626553  |z (OCoLC)1060594134  |z (OCoLC)1081230364  |z (OCoLC)1086542377  |z (OCoLC)1103253257  |z (OCoLC)1105181330  |z (OCoLC)1105707377  |z (OCoLC)1110904347  |z (OCoLC)1122813116  |z (OCoLC)1129358137 
037 |a CL0500000997  |b Safari Books Online 
050 4 |a Q325.5  |b .A58 2018 
072 7 |a COM  |x 000000  |2 bisacsh 
072 7 |a UMA  |2 bicssc 
072 7 |a UMA  |2 thema 
082 0 4 |a 006.3/12  |2 23 
049 |a UAMI 
100 1 |a Amunategui, Manuel,  |e author. 
245 1 0 |a Monetizing machine learning :  |b quickly turn Python ML ideas into web applications on the serverless cloud /  |c Manuel Amunategui, Mehdi Roopaei. 
264 1 |a [New York] :  |b Apress,  |c [2018] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
520 |a Take your Python machine learning ideas and create serverless web applications accessible by anyone with an Internet connection. Some of the most popular serverless cloud providers are covered in this book - Amazon, Microsoft, Google, and PythonAnywhere. You will work through a series of common Python data science problems in an increasing order of complexity. The practical projects presented in this book are simple, clear, and can be used as templates to jump-start many other types of projects. You will learn to create a web application around numerical or categorical predictions, understand the analysis of text, create powerful and interactive presentations, serve restricted access to data, and leverage web plugins to accept credit card payments and donations. You will get your projects into the hands of the world in no time. Each chapter follows three steps: modeling the right way, designing and developing a local web application, and deploying onto a popular and reliable serverless cloud provider. You can easily jump to or skip particular topics in the book. You also will have access to Jupyter notebooks and code repositories for complete versions of the code covered in the book. 
588 0 |a Online resource; title from digital title page (viewed on October 08, 2018). 
504 |a Includes bibliographical references. 
505 0 |a Intro; Table of Contents; About the Authors; About the Technical Reviewers; Acknowledgments; Introduction; Chapter 1: Introduction to Serverless Technologies; A Simple Local Flask Application; Step 1: Basic "Hello World!" Example; Step 2: Start a Virtual Environment; Step 3: Install Flask; Step 4: Run Web Application; Step 5: View in Browser; Step 6: A Slightly Faster Way; Step 7: Closing It All Down; Introducing Serverless Hosting on Microsoft Azure; Step 1: Get an Account on Microsoft Azure; Step 2: Download Source Files; Supporting Files; Step 3: Install Git; Step 4: Open Azure Cloud Shell. 
505 8 |a Step 5: Create a Deployment UserStep 6: Create a Resource Group; Step 7: Create an Azure Service Plan; Step 8: Create a Web App; Check Your Website Placeholder; Step 9: Pushing Out the Web Application; Step 10: View in Browser; Step 11: Don't Forget to Delete Your Web Application!; Conclusion and Additional Information; Introducing Serverless Hosting on Google Cloud; Step 1: Get an Account on Google Cloud; Step 2: Download Source Files; Step 3: Open Google Cloud Shell; Step 4: Upload Flask Files to Google Cloud; Step 5: Deploy Your Web Application on Google Cloud. 
505 8 |a Step 6: Don't Forget to Delete Your Web Application!Conclusion and Additional Information; Introducing Serverless Hosting on Amazon AWS; Step 1: Get an Account on Amazon AWS; Step 2: Download Source Files; Step 3: Create an Access Account for Elastic Beanstalk; Step 4: Install Elastic Beanstalk (EB); Step 5: EB Command Line Interface; Step 6: Take if for a Spin; Step 7: Don't Forget to Turn It Off!; Conclusion and Additional Information; Introducing Hosting on PythonAnywhere; Step 1: Get an Account on PythonAnywhere; Step 2: Set Up Flask Web Framework; Conclusion and Additional Information. 
505 8 |a Creating Dummy Features from Categorical DataTrying a Nonlinear Model; Even More Complex Feature Engineering-Leveraging Time-Series; A Parsimonious Model; Extracting Regression Coefficients from a Simple Model-an Easy Way to Predict Demand without Server-Side Computing; R-Squared; Predicting on New Data Using Extracted Coefficients; Designing a Fun and Interactive Web Application to Illustrate Bike Rental Demand; Abstracting Code for Readability and Extendibility; Building a Local Flask Application; Downloading and Running the Bike Sharing GitHub Code Locally; Debugging Tips. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning  |x Finance. 
650 0 |a Computer algorithms. 
650 0 |a Python (Computer program language) 
650 2 |a Algorithms 
650 6 |a Apprentissage automatique  |x Finances. 
650 6 |a Algorithmes. 
650 6 |a Python (Langage de programmation) 
650 7 |a algorithms.  |2 aat 
650 7 |a Network hardware.  |2 bicssc 
650 7 |a Databases.  |2 bicssc 
650 7 |a Program concepts  |x learning to program.  |2 bicssc 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Computer algorithms  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
700 1 |a Roopaei, Mehdi,  |e author. 
776 0 8 |i Print version:  |a Amunategui, Manuel.  |t Monetizing machine learning.  |d [New York] : Apress, [2018]  |z 1484238729  |z 9781484238721  |w (OCoLC)1043880237 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484238738/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35220319 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5516214 
938 |a EBSCOhost  |b EBSC  |n 1893766 
938 |a YBP Library Services  |b YANK  |n 15703299 
994 |a 92  |b IZTAP