Cargando…

Applied text analysis with Python : enabling language-aware data products with machine learning /

From news and speeches to informal chatter on social media, natural language is one of the richest and most underutilized sources of data. Not only does it come in a constant stream, always changing and adapting in context; it also contains information that is not conveyed by traditional data source...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bengfort, Benjamin, 1984- (Autor), Bilbro, Rebecca (Autor), Ojeda, Tony (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, [2018]
Edición:First edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1046057318
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 180725s2018 caua ob 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d MERER  |d STF  |d OCLCQ  |d TOH  |d OCLCF  |d DEBBG  |d CEF  |d G3B  |d UAB  |d GRG  |d N$T  |d EBLCP  |d TEFOD  |d I3U  |d AAA  |d AJB  |d NRC  |d UMC  |d S9I  |d VT2  |d C6I  |d OCLCQ  |d YDX  |d UKAHL  |d VFL  |d OCLCQ  |d OCLCO  |d NZAUC  |d OCLCQ  |d OCLCO 
019 |a 1039887927  |a 1040534119  |a 1111123796  |a 1202555092  |a 1240512425 
020 |a 9781491963012  |q (electronic book) 
020 |a 1491963018  |q (electronic book) 
020 |a 9781491962992  |q (electronic bk.) 
020 |a 1491962992  |q (electronic bk.) 
020 |a 1491963042 
020 |a 9781491963043 
020 |z 9781491963043  |q (paperback) 
029 1 |a GBVCP  |b 1029873151 
029 1 |a AU@  |b 000068979674 
035 |a (OCoLC)1046057318  |z (OCoLC)1039887927  |z (OCoLC)1040534119  |z (OCoLC)1111123796  |z (OCoLC)1202555092  |z (OCoLC)1240512425 
037 |a CL0500000981  |b Safari Books Online 
050 4 |a QA76.73.P98 
072 7 |a COM  |x 051360  |2 bisacsh 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Bengfort, Benjamin,  |d 1984-  |e author.  |4 aut 
245 1 0 |a Applied text analysis with Python :  |b enabling language-aware data products with machine learning /  |c Benjamin Bengfort, Rebecca Bilbro, and Tony Ojeda. 
250 |a First edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media,  |c [2018] 
264 4 |c Ã2018 
300 |a 1 online resource (xviii, 310 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
588 0 |a Online resource; title from title page (Safari, viewed July 23, 2018). 
504 |a Includes bibliographical references and index. 
505 0 |a 1. Language and computation -- 2. Building a custom corpus -- 3. Corpus preprocessing and wrangling -- 4. Text vectorization and transformation pipelines -- 5. Classification for text analysis -- 6. Clustering for text similarity -- 7. Context-aware text analysis -- 8. Text visualization -- 9. Graph analysis of text -- 10. Chatbots -- 11. Scaling text analytics with multiprocessing and spark -- 12. Deep learning and beyond. 
505 0 |a Cover; Copyright; Table of Contents; Preface; Computational Challenges of Natural Language; Linguistic Data: Tokens and Words; Enter Machine Learning; Tools for Text Analysis; What to Expect from This Book; Who This Book Is For; Code Examples and GitHub Repository; Conventions Used in This Book; Using Code Examples; O'Reilly Safari; How to Contact Us; Acknowledgments; Chapter 1. Language and Computation; The Data Science Paradigm; Language-Aware Data Products; The Data Product Pipeline; Language as Data; A Computational Model of Language; Language Features; Contextual Features. 
505 8 |a Structural FeaturesConclusion; Chapter 2. Building a Custom Corpus; What Is a Corpus?; Domain-Specific Corpora; The Baleen Ingestion Engine; Corpus Data Management; Corpus Disk Structure; Corpus Readers; Streaming Data Access with NLTK; Reading an HTML Corpus; Reading a Corpus from a Database; Conclusion; Chapter 3. Corpus Preprocessing and Wrangling; Breaking Down Documents; Identifying and Extracting Core Content; Deconstructing Documents into Paragraphs; Segmentation: Breaking Out Sentences; Tokenization: Identifying Individual Tokens; Part-of-Speech Tagging; Intermediate Corpus Analytics. 
505 8 |a Corpus TransformationIntermediate Preprocessing and Storage; Reading the Processed Corpus; Conclusion; Chapter 4. Text Vectorization and Transformation Pipelines; Words in Space; Frequency Vectors; One-Hot Encoding; Term Frequency-Inverse Document Frequency; Distributed Representation; The Scikit-Learn API; The BaseEstimator Interface; Extending TransformerMixin; Pipelines; Pipeline Basics; Grid Search for Hyperparameter Optimization; Enriching Feature Extraction with Feature Unions; Conclusion; Chapter 5. Classification for Text Analysis; Text Classification. 
505 8 |a Identifying Classification ProblemsClassifier Models; Building a Text Classification Application; Cross-Validation; Model Construction; Model Evaluation; Model Operationalization; Conclusion; Chapter 6. Clustering for Text Similarity; Unsupervised Learning on Text; Clustering by Document Similarity; Distance Metrics; Partitive Clustering; Hierarchical Clustering; Modeling Document Topics; Latent Dirichlet Allocation; Latent Semantic Analysis; Non-Negative Matrix Factorization; Conclusion; Chapter 7. Context-Aware Text Analysis; Grammar-Based Feature Extraction; Context-Free Grammars. 
505 8 |a Syntactic ParsersExtracting Keyphrases; Extracting Entities; n-Gram Feature Extraction; An n-Gram-Aware CorpusReader; Choosing the Right n-Gram Window; Significant Collocations; n-Gram Language Models; Frequency and Conditional Frequency; Estimating Maximum Likelihood; Unknown Words: Back-off and Smoothing; Language Generation; Conclusion; Chapter 8. Text Visualization; Visualizing Feature Space; Visual Feature Analysis; Guided Feature Engineering; Model Diagnostics; Visualizing Clusters; Visualizing Classes; Diagnosing Classification Error; Visual Steering; Silhouette Scores and Elbow Curves. 
520 |a From news and speeches to informal chatter on social media, natural language is one of the richest and most underutilized sources of data. Not only does it come in a constant stream, always changing and adapting in context; it also contains information that is not conveyed by traditional data sources. The key to unlocking natural language is through the creative application of text analytics. This practical book presents a data scientist's approach to building language-aware products with applied machine learning. You'll learn robust, repeatable, and scalable techniques for text analysis with Python, including contextual and linguistic feature engineering, vectorization, classification, topic modeling, entity resolution, graph analysis, and visual steering. By the end of the book, you'll be equipped with practical methods to solve any number of complex real-world problems. Preprocess and vectorize text into high-dimensional feature representations. Perform document classification and topic modeling. Steer the model selection process with visual diagnostics. Extract key phrases, named entities, and graph structures to reason about data in text. Build a dialog framework to enable chatbots and language-driven interaction. Use Spark to scale processing power and neural networks to scale model complexity.--Provided by publisher. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Python (Computer program language) 
650 0 |a Natural language processing (Computer science) 
650 0 |a Machine learning. 
650 2 |a Natural Language Processing 
650 2 |a Machine Learning 
650 6 |a Python (Langage de programmation) 
650 6 |a Traitement automatique des langues naturelles. 
650 6 |a Apprentissage automatique. 
650 7 |a COMPUTERS  |x Programming Languages  |x Python.  |2 bisacsh 
650 7 |a Machine learning  |2 fast 
650 7 |a Natural language processing (Computer science)  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
700 1 |a Bilbro, Rebecca,  |e author  |4 aut 
700 1 |a Ojeda, Tony,  |e author  |4 aut 
776 0 8 |i Print version:  |a Bengfort, Benjamin, 1984-  |t Applied text analysis with Python.  |b First edition.  |d Sebastopol, CA : O'Reilly Media, Inc., 2018  |w (DLC) 2018276483 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781491963036/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37545940 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5425029 
938 |a EBSCOhost  |b EBSC  |n 1827695 
938 |a YBP Library Services  |b YANK  |n 15546767 
938 |a YBP Library Services  |b YANK  |n 15530107 
994 |a 92  |b IZTAP