Cargando…

Streaming systems : the what, where, when, and how of large-scale data processing /

Streaming data is a big deal in big data these days. As more and more businesses seek to tame the massive unbounded data sets that pervade our world, streaming systems have finally reached a level of maturity sufficient for mainstream adoption. With this practical guide, data engineers, data scienti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Akidau, Tyler (Autor), Chernyak, Slava (Autor), Lax, Reuven (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, Inc., [2018]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_on1045069088
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 180720t20182018cau o 001 0 eng d
010 |a  2018277258 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d TEFOD  |d OCLCF  |d YDX  |d NRC  |d MNW  |d OCLCQ  |d ZQP  |d MZG  |d VT2  |d UMI  |d OCLCQ  |d UKAHL  |d OCLCO  |d NZAUC  |d OCLCQ 
019 |a 1045652610  |a 1081331101  |a 1135325984  |a 1289848633 
020 |a 9781491983843  |q (electronic bk.) 
020 |a 1491983841  |q (electronic bk.) 
020 |a 9781491983829  |q (electronic bk.) 
020 |a 1491983825  |q (electronic bk.) 
020 |z 9781491983874 
020 |z 1491983876 
029 1 |a AU@  |b 000065314714 
035 |a (OCoLC)1045069088  |z (OCoLC)1045652610  |z (OCoLC)1081331101  |z (OCoLC)1135325984  |z (OCoLC)1289848633 
037 |a 72062393-1443-4423-ADFD-E1272B01112E  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a TK5105.386 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.7876  |2 23 
049 |a UAMI 
100 1 |a Akidau, Tyler,  |e author. 
245 1 0 |a Streaming systems :  |b the what, where, when, and how of large-scale data processing /  |c Tyler Akidau, Slava Chernyak, Reuven Lax. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media, Inc.,  |c [2018] 
264 4 |c ©2018 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed July 23, 2018). 
505 0 |a The beam model. Streaming 101 -- The what, where, when, and how of data processing -- Watermarks -- Advanced windowing -- Exactly-once and side effects -- Streams and tables. The practicalities of persistent state -- Streaming SQL -- Streaming joins -- The evolution of large-scale data processing. 
505 0 |a Intro; Copyright; Table of Contents; Preface Or: What Are You Getting Yourself Into Here?; Navigating This Book; Takeaways; Conventions Used in This Book; Online Resources; Figures; Code Snippets; O'Reilly Safari; How to Contact Us; Acknowledgments; Part I. The Beam Model; Chapter 1. Streaming 101; Terminology: What Is Streaming?; On the Greatly Exaggerated Limitations of Streaming; Event Time Versus Processing Time; Data Processing Patterns; Bounded Data; Unbounded Data: Batch; Unbounded Data: Streaming; Summary; Chapter 2. The What, Where, When, and How of Data Processing; Roadmap 
505 8 |a Batch Foundations: What and WhereWhat: Transformations; Where: Windowing; Going Streaming: When and How; When: The Wonderful Thing About Triggers Is Triggers Are Wonderful Things!; When: Watermarks; When: Early/On-Time/Late Triggers FTW!; When: Allowed Lateness (i.e., Garbage Collection); How: Accumulation; Summary; Chapter 3. Watermarks; Definition; Source Watermark Creation; Perfect Watermark Creation; Heuristic Watermark Creation; Watermark Propagation; Understanding Watermark Propagation; Watermark Propagation and Output Timestamps; The Tricky Case of Overlapping Windows 
505 8 |a Percentile WatermarksProcessing-Time Watermarks; Case Studies; Case Study: Watermarks in Google Cloud Dataflow; Case Study: Watermarks in Apache Flink; Case Study: Source Watermarks for Google Cloud Pub/Sub; Summary; Chapter 4. Advanced Windowing; When/Where: Processing-Time Windows; Event-Time Windowing; Processing-Time Windowing via Triggers; Processing-Time Windowing via Ingress Time; Where: Session Windows; Where: Custom Windowing; Variations on Fixed Windows; Variations on Session Windows; One Size Does Not Fit All; Summary; Chapter 5. Exactly-Once and Side Effects 
505 8 |a Why Exactly Once MattersAccuracy Versus Completeness; Side Effects; Problem Definition; Ensuring Exactly Once in Shuffle; Addressing Determinism; Performance; Graph Optimization; Bloom Filters; Garbage Collection; Exactly Once in Sources; Exactly Once in Sinks; Use Cases; Example Source: Cloud Pub/Sub; Example Sink: Files; Example Sink: Google BigQuery; Other Systems; Apache Spark Streaming; Apache Flink; Summary; Part II. Streams and Tables; Chapter 6. Streams and Tables; Stream-and-Table Basics Or: a Special Theory of Stream and Table Relativity 
505 8 |a Toward a General Theory of Stream and Table RelativityBatch Processing Versus Streams and Tables; A Streams and Tables Analysis of MapReduce; Reconciling with Batch Processing; What, Where, When, and How in a Streams and Tables World; What: Transformations; Where: Windowing; When: Triggers; How: Accumulation; A Holistic View of Streams and Tables in the Beam Model; A General Theory of Stream and Table Relativity; Summary; Chapter 7. The Practicalities of Persistent State; Motivation; The Inevitability of Failure; Correctness and Efficiency; Implicit State; Raw Grouping; Incremental Combining 
504 |a Includes bibliographical references and index. 
520 |a Streaming data is a big deal in big data these days. As more and more businesses seek to tame the massive unbounded data sets that pervade our world, streaming systems have finally reached a level of maturity sufficient for mainstream adoption. With this practical guide, data engineers, data scientists, and developers will learn how to work with streaming data in a conceptual and platform-agnostic way. Expanded from Tyler Akidau's popular blog posts "Streaming 101" and "Streaming 102", this book takes you from an introductory level to a nuanced understanding of the what, where, when, and how of processing real-time data streams. You'll also dive deep into watermarks and exactly-once processing with co-authors Slava Chernyak and Reuven Lax. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Streaming technology (Telecommunications) 
650 0 |a Electronic data processing  |x Distributed processing. 
650 0 |a Big data. 
650 2 |a Webcasts as Topic 
650 6 |a En continu (Télécommunications) 
650 6 |a Traitement réparti. 
650 6 |a Données volumineuses. 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Electronic data processing  |x Distributed processing.  |2 fast  |0 (OCoLC)fst00906987 
650 7 |a Streaming technology (Telecommunications)  |2 fast  |0 (OCoLC)fst01134637 
654 |a COMPUTERS  |b General.  |2 bisacsh 
700 1 |a Chernyak, Slava,  |e author. 
700 1 |a Lax, Reuven,  |e author. 
776 0 8 |i Print version:  |a Akidau, Tyler.  |t Streaming systems.  |d Sebastopol, CA : O'Reilly Media, Inc., [2018]  |z 9781491983874  |z 1491983876  |w (OCoLC)975362965 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781491983867/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37104552 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5454648 
938 |a EBSCOhost  |b EBSC  |n 1853516 
938 |a YBP Library Services  |b YANK  |n 15606578 
994 |a 92  |b IZTAP