|
|
|
|
LEADER |
00000cgm a2200000 i 4500 |
001 |
OR_on1043906450 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o c |
007 |
cr cna|||||||| |
007 |
vz czazuu |
008 |
180711s2017 xx 356 o vleng d |
040 |
|
|
|a UMI
|b eng
|e rda
|e pn
|c UMI
|d OCLCF
|d TOH
|d S9I
|d UAB
|d ERF
|d OCLCO
|d OCLCQ
|d DST
|d OCLCO
|
019 |
|
|
|a 1300631528
|a 1303384141
|
029 |
1 |
|
|a AU@
|b 000067118619
|
035 |
|
|
|a (OCoLC)1043906450
|z (OCoLC)1300631528
|z (OCoLC)1303384141
|
037 |
|
|
|a CL0500000978
|b Safari Books Online
|
050 |
|
4 |
|a QA76.73.P98
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Hoff, Ben,
|e speaker.
|
245 |
1 |
0 |
|a Learning Python data analysis /
|c Ben Hoff.
|
264 |
|
1 |
|a [Place of publication not identified] :
|b Packt,
|c [2017]
|
300 |
|
|
|a 1 online resource (1 streaming video file (5 hr., 55 min., 42 sec.))
|
336 |
|
|
|a two-dimensional moving image
|b tdi
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
337 |
|
|
|a video
|b v
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|
380 |
|
|
|a Videorecording
|
511 |
0 |
|
|a Presenter, Ben Hoff.
|
500 |
|
|
|a Title from title screen (viewed July 11, 2018).
|
500 |
|
|
|a Date of publication from resource description page.
|
520 |
|
|
|a "Python features numerous numerical and mathematical toolkits such as: Numpy, Scipy, Scikit learn and SciKit, all used for data analysis and machine learning. With the aid of all of these, Python has become the language of choice for data scientists for data analysis, visualization, and machine learning. This video aims to teach Python developers how to perform data analysis with the language by taking advantage of the core data science libraries in the Python ecosystem. The learning objective for viewers is to understand how to locate, manipulate, and analyze data with Python, with the ability to analyze large and small sets of data using libraries such as Numpy, pandas, IPython and SciPy. This is a two part series. The first series is focused on getting and manipulation sizeable amounts of data using modern techniques. The second series is focused on advanced analysis of the data to include modern machine learning techniques."--Resource description page
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Python (Computer program language)
|
650 |
|
0 |
|a Data mining.
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
0 |
|a Mathematical statistics
|x Data processing.
|
650 |
|
0 |
|a Electronic data processing.
|
650 |
|
6 |
|a Python (Langage de programmation)
|
650 |
|
6 |
|a Exploration de données (Informatique)
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
6 |
|a Statistique mathématique
|x Informatique.
|
650 |
|
7 |
|a Data mining.
|2 fast
|0 (OCoLC)fst00887946
|
650 |
|
7 |
|a Electronic data processing.
|2 fast
|0 (OCoLC)fst00906956
|
650 |
|
7 |
|a Machine learning.
|2 fast
|0 (OCoLC)fst01004795
|
650 |
|
7 |
|a Mathematical statistics
|x Data processing.
|2 fast
|0 (OCoLC)fst01012133
|
650 |
|
7 |
|a Python (Computer program language)
|2 fast
|0 (OCoLC)fst01084736
|
655 |
|
4 |
|a Electronic videos.
|
776 |
|
|
|z 1-78588-071-3
|
856 |
4 |
0 |
|u https://learning.oreilly.com/videos/~/9781785880711/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
994 |
|
|
|a 92
|b IZTAP
|