Cargando…

Machine learning systems : designs that scale /

Machine Learning Systems: Designs that scale is an example-rich guide that teaches you how to implement reactive design solutions in your machine learning systems to make them as reliable as a well-built web app. About the Technology If you're building machine learning models to be used on a sm...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Smith, Jeff (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Shelter Island, NY : Manning Publications Co., [2018]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1043671380
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 180709s2018 nyua o 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d STF  |d TOH  |d DEBBG  |d CEF  |d CNCEN  |d G3B  |d S9I  |d UAB  |d C6I  |d YDX  |d EBLCP  |d OCLCQ  |d DST  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 1617293334 
020 |a 9781617293337 
020 |z 9781617293337 
029 1 |a GBVCP  |b 1029873429 
035 |a (OCoLC)1043671380 
037 |a CL0500000977  |b Safari Books Online 
050 4 |a Q325.5 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Smith, Jeff,  |e author. 
245 1 0 |a Machine learning systems :  |b designs that scale /  |c Jeff Smith. 
264 1 |a Shelter Island, NY :  |b Manning Publications Co.,  |c [2018] 
264 4 |c Ã2018 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
588 0 |a Online resource; title from title page (Safari, viewed July 9, 2018). 
500 |a Includes index. 
505 0 |a Fundamentals of reactive machine learning -- Building a reactive machine learning system -- Operating a machine learning system. 
520 |a Machine Learning Systems: Designs that scale is an example-rich guide that teaches you how to implement reactive design solutions in your machine learning systems to make them as reliable as a well-built web app. About the Technology If you're building machine learning models to be used on a small scale, you don't need this book. But if you're a developer building a production-grade ML application that needs quick response times, reliability, and good user experience, this is the book for you. It collects principles and practices of machine learning systems that are dramatically easier to run and maintain, and that are reliably better for users. About the Book Machine Learning Systems: Designs that scale teaches you to design and implement production-ready ML systems. You'll learn the principles of reactive design as you build pipelines with Spark, create highly scalable services with Akka, and use powerful machine learning libraries like MLib on massive datasets. The examples use the Scala language, but the same ideas and tools work in Java, as well. What's inside Working with Spark, MLlib, and Akka Reactive design patterns Monitoring and maintaining a large-scale system Futures, actors, and supervision About the Reader Readers need intermediate skills in Java or Scala. No prior machine learning experience is assumed. About the Author Jeff Smith builds powerful machine learning systems. For the past decade, he has been working on building data science applications, teams, and companies as part of various teams in New York, San Francisco, and Hong Kong. He blogs (https://medium.com/@jeffksmithjr), tweets (@jeffksmithjr), and speaks (www.jeffsmith.tech/speaking) about various aspects of building real-world machine learning systems. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a Machine learning  |2 fast 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781617293337/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6642837 
938 |a YBP Library Services  |b YANK  |n 302272911 
994 |a 92  |b IZTAP