Cargando…

Mastering machine learning algorithms : expert techniques to implement popular machine learning algorithms and fine-tune your models /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bonaccorso, Giuseppe (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2018.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1042342272
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 180702s2018 enka o 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d TOH  |d STF  |d DEBBG  |d TEFOD  |d CEF  |d CNCEN  |d G3B  |d S9I  |d UAB  |d AU@  |d VT2  |d C6I  |d N$T  |d UX1  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d NZAUC  |d OCLCQ  |d PSYSI  |d OCLCQ 
019 |a 1175628394 
020 |a 9781788625906  |q (electronic bk.) 
020 |a 1788625900  |q (electronic bk.) 
020 |a 1788621115 
020 |a 9781788621113 
024 3 |a 9781788621113 
029 1 |a GBVCP  |b 1029873674 
035 |a (OCoLC)1042342272  |z (OCoLC)1175628394 
037 |a CL0500000976  |b Safari Books Online 
037 |a 80479F1A-83BB-4D38-BFE3-7A91840FDC3D  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a Q325.5 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Bonaccorso, Giuseppe,  |e author. 
245 1 0 |a Mastering machine learning algorithms :  |b expert techniques to implement popular machine learning algorithms and fine-tune your models /  |c Giuseppe Bonaccorso. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2018. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
588 0 |a Online resource; title from title page (Safari, viewed June 29, 2018). 
520 8 |a Annotation  |b Explore and master the most important algorithms for solving complex machine learning problems. Key FeaturesDiscover high-performing machine learning algorithms and understand how they work in depth. One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation. Master concepts related to algorithm tuning, parameter optimization, and moreBook DescriptionMachine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need. What you will learnExplore how a ML model can be trained, optimized, and evaluatedUnderstand how to create and learn static and dynamic probabilistic modelsSuccessfully cluster high-dimensional data and evaluate model accuracyDiscover how artificial neural networks work and how to train, optimize, and validate themWork with Autoencoders and Generative Adversarial NetworksApply label spreading and propagation to large datasetsExplore the most important Reinforcement Learning techniquesWho this book is forThis book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Computer algorithms. 
650 2 |a Algorithms 
650 6 |a Apprentissage automatique. 
650 6 |a Algorithmes. 
650 7 |a algorithms.  |2 aat 
650 7 |a Mathematical theory of computation.  |2 bicssc 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Machine learning.  |2 bicssc 
650 7 |a Information architecture.  |2 bicssc 
650 7 |a Database design & theory.  |2 bicssc 
650 7 |a Computers  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Computers  |x Machine Theory.  |2 bisacsh 
650 7 |a Computers  |x Data Modeling & Design.  |2 bisacsh 
650 7 |a Computer algorithms.  |2 fast  |0 (OCoLC)fst00872010 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781788621113/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a EBSCOhost  |b EBSC  |n 1823677 
994 |a 92  |b IZTAP