Cargando…

Practical Enterprise Data Lake Insights : handle data-driven challenges in an Enterprise Big Data Lake /

Use this practical guide to successfully handle the challenges encountered when designing an enterprise data lake and learn industry best practices to resolve issues. When designing an enterprise data lake you often hit a roadblock when you must leave the comfort of the relational world and learn th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Gupta, Saurabh (Autor), Giri, Venkata (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Berkeley, CA] : Apress, 2018.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1042329316
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 180702s2018 cau ob 000 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d GW5XE  |d UAB  |d UPM  |d OCLCF  |d OCLCQ  |d VT2  |d WYU  |d OTZ  |d LVT  |d UKMGB  |d U3W  |d UMI  |d G3B  |d CAUOI  |d STF  |d SNK  |d YOU  |d K6U  |d MERER  |d OCLCQ  |d COO  |d OCLCQ  |d UHL  |d UKAHL  |d OCLCQ  |d BRF  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ  |d YDX  |d OCLCQ 
015 |a GBB8M4619  |2 bnb 
016 7 |a 019140156  |2 Uk 
019 |a 1047669376  |a 1055400060  |a 1066575257  |a 1081290112  |a 1082143752  |a 1086447627  |a 1113621640 
020 |a 9781484235225  |q (electronic bk.) 
020 |a 1484235223  |q (electronic bk.) 
020 |a 1484235215 
020 |a 9781484235218 
020 |z 9781484235218 
024 7 |a 10.1007/978-1-4842-3522-5  |2 doi 
029 1 |a AU@  |b 000063679146 
029 1 |a AU@  |b 000067503457 
029 1 |a CHNEW  |b 001063578 
029 1 |a CHVBK  |b 575141417 
029 1 |a UKMGB  |b 019140156 
035 |a (OCoLC)1042329316  |z (OCoLC)1047669376  |z (OCoLC)1055400060  |z (OCoLC)1066575257  |z (OCoLC)1081290112  |z (OCoLC)1082143752  |z (OCoLC)1086447627  |z (OCoLC)1113621640 
037 |a com.springer.onix.9781484235225  |b Springer Nature 
050 4 |a QA76.9.D5 
072 7 |a COM  |x 018000  |2 bisacsh 
082 0 4 |a 004.36  |2 23 
049 |a UAMI 
100 1 |a Gupta, Saurabh,  |e author. 
245 1 0 |a Practical Enterprise Data Lake Insights :  |b handle data-driven challenges in an Enterprise Big Data Lake /  |c Saurabh Gupta, Venkata Giri. 
264 1 |a [Berkeley, CA] :  |b Apress,  |c 2018. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed July 5, 2018). 
505 0 |a Intro; Table of Contents; About the Authors; About the Technical Reviewer; Acknowledgments; Foreword; Chapter 1: Introduction to Enterprise Data Lakes; Data explosion: the beginning; Big data ecosystem; Hadoop and MapReduce -- Early days; Evolution of Hadoop; History of Data Lake; Data Lake: the concept; Data lake architecture; Why Data Lake?; Data Lake Characteristics; Data lake vs. Data warehouse; How to achieve success with Data Lake?; Data governance and data operations; Data democratization with data lake; Fast Data -- Life beyond Big Data; Conclusion. 
505 8 |a Chapter 2: Data lake ingestion strategiesWhat is data ingestion?; Understand the data sources; Structured vs. Semi-structured vs. Unstructured data; Data ingestion framework parameters; ETL vs. ELT; Big Data Integration with Data Lake; Hadoop Distributed File System (HDFS); Copy files directly into HDFS; Batched data ingestion; Challenges and design considerations; Design considerations; Commercial ETL tools; Real-time ingestion; CDC design considerations; Example of CDC pipeline: Databus, LinkedIn's open-source solution; Apache Sqoop; Sqoop 1; Sqoop 2; How Sqoop works? 
505 8 |a Sqoop design considerationsNative ingestion utilities; Oracle copyToBDA; Greenplum gphdfs utility; Data transfer from Greenplum to using gpfdist; Ingest unstructured data into Hadoop; Apache Flume; Tiered architecture for convergent flow of events; Features and design considerations; Conclusion; Chapter 3: Capture Streaming Data with Change-Data-Capture; Change Data Capture Concepts; Strategies for Data Capture; Retention and Replay; Retention Period; Types of CDC; Incremental; Bulk; Hybrid; CDC -- Trade-offs; CDC Tools; Challenges; Downstream Propagation; Use Case. 
505 8 |a Centralization of Change DataAnalyzing a Centralized Data Store; Metadata: Data about Data; Structure of Data; Privacy/Sensitivity Information; Special Fields; Data Formats; Delimited Format; Avro File Format; Consumption and Checkpointing; Simple Checkpoint Mechanism; Parallelism; Merging and Consolidation; Design Considerations for Merge and Consolidate; Data Quality; Challenges; Design Aspects; Operational Aspects; Publishing to Kafka; Schema and Data; Sample Schema; Schema Repository; Multiple Topics and Partitioning; Sizing and Scaling; Tools; Conclusion. 
505 8 |a Chapter 4: Data Processing Strategies in Data LakesMapReduce Processing Framework; Motivation: Why MapReduce?; MapReduce V1 Refresher and Design Considerations; Yet Another Resource Negotiator -- YARN; YARN concepts; Hive; Hive -- Quick Refresher; Hive Components; Hive Metastore (a.k.a. HCatalog); Hive -- Design Considerations; Hive LLAP; Apache Pig; Pig Execution Architecture; Apache Spark; Why Spark?; Resilient Distributed Datasets (RDD); RDD Runtime Components; RDD Composition; Datasets and DataFrames; Bucketing, Sorting, and Partitioning; Deployment Modes of Spark Application. 
520 |a Use this practical guide to successfully handle the challenges encountered when designing an enterprise data lake and learn industry best practices to resolve issues. When designing an enterprise data lake you often hit a roadblock when you must leave the comfort of the relational world and learn the nuances of handling non-relational data. Starting from sourcing data into the Hadoop ecosystem, you will go through stages that can bring up tough questions such as data processing, data querying, and security. Concepts such as change data capture and data streaming are covered. The book takes an end-to-end solution approach in a data lake environment that includes data security, high availability, data processing, data streaming, and more. Each chapter includes application of a concept, code snippets, and use case demonstrations to provide you with a practical approach. You will learn the concept, scope, application, and starting point. What You'll Learn: Get to know data lake architecture and design principles Implement data capture and streaming strategies Implement data processing strategies in Hadoop Understand the data lake security framework and availability model. 
504 |a Includes bibliographical references. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Electronic data processing  |x Distributed processing  |x Management. 
650 0 |a Big data. 
650 0 |a Information storage and retrieval systems. 
650 2 |a Information Systems 
650 6 |a Données volumineuses. 
650 6 |a Systèmes d'information. 
650 7 |a Information technology: general issues.  |2 bicssc 
650 7 |a Business mathematics & systems.  |2 bicssc 
650 7 |a Databases.  |2 bicssc 
650 7 |a COMPUTERS  |x Data Processing.  |2 bisacsh 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Electronic data processing  |x Distributed processing  |x Management.  |2 fast  |0 (OCoLC)fst00906991 
650 7 |a Information storage and retrieval systems.  |2 fast  |0 (OCoLC)fst00972781 
700 1 |a Giri, Venkata,  |e author. 
776 0 8 |i Printed edition:  |z 9781484235218 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484235225/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 15575404 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35093466 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5438674 
938 |a EBSCOhost  |b EBSC  |n 1840106 
994 |a 92  |b IZTAP