Cargando…

Veracity of big data : machine learning and other approaches to verifying truthfulness /

Examine the problem of maintaining the quality of big data and discover novel solutions. You will learn the four V's of big data, including veracity, and study the problem from various angles. The solutions discussed are drawn from diverse areas of engineering and math, including machine learni...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pendyala, Vishnu
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [United States] : Apress, [2018]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1039888056
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 180612s2018 xxua ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d OCLCO  |d EBLCP  |d YDX  |d AZU  |d GW5XE  |d OCLCF  |d UAB  |d UMI  |d UPM  |d STF  |d WAU  |d TOH  |d VT2  |d DEBBG  |d CEF  |d YOU  |d OTZ  |d G3B  |d LVT  |d OCLCQ  |d OCLCO  |d WYU  |d S9I  |d U3W  |d K6U  |d UKMGB  |d CAUOI  |d SNK  |d MERER  |d OCLCQ  |d AU@  |d UKAHL  |d OCLCQ  |d ADU  |d UHL  |d LEATE  |d OCLCQ  |d SFB  |d OCLCQ  |d BRF  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ  |d OCLCO 
015 |a GBB8O3826  |2 bnb 
016 7 |a 019183857  |2 Uk 
019 |a 1040497812  |a 1040614941  |a 1041493034  |a 1041760049  |a 1043671347  |a 1047689678  |a 1050968895  |a 1055337624  |a 1058828975  |a 1066632023  |a 1081292190  |a 1086558010  |a 1097104559  |a 1113450736  |a 1113771954  |a 1122816369  |a 1125669753  |a 1129361613  |a 1131953267 
020 |a 9781484236338  |q (electronic bk.) 
020 |a 1484236335  |q (electronic bk.) 
020 |a 1484236327 
020 |a 9781484236321 
020 |z 9781484236321 
020 |z 1484236327 
024 3 |a 9781484236321 
024 7 |a 10.1007/978-1-4842-3633-8  |2 doi 
029 1 |a AU@  |b 000066232529 
029 1 |a AU@  |b 000067107224 
029 1 |a CHNEW  |b 001063540 
029 1 |a CHVBK  |b 575141026 
029 1 |a GBVCP  |b 1029873089 
029 1 |a UKMGB  |b 019183857 
029 1 |a AU@  |b 000069005054 
029 1 |a AU@  |b 000063798879 
035 |a (OCoLC)1039888056  |z (OCoLC)1040497812  |z (OCoLC)1040614941  |z (OCoLC)1041493034  |z (OCoLC)1041760049  |z (OCoLC)1043671347  |z (OCoLC)1047689678  |z (OCoLC)1050968895  |z (OCoLC)1055337624  |z (OCoLC)1058828975  |z (OCoLC)1066632023  |z (OCoLC)1081292190  |z (OCoLC)1086558010  |z (OCoLC)1097104559  |z (OCoLC)1113450736  |z (OCoLC)1113771954  |z (OCoLC)1122816369  |z (OCoLC)1125669753  |z (OCoLC)1129361613  |z (OCoLC)1131953267 
037 |a CL0500000977  |b Safari Books Online 
050 4 |a QA76.9.A43 
072 7 |a COM  |x 000000  |2 bisacsh 
072 7 |a UN  |2 bicssc 
072 7 |a UN  |2 thema 
082 0 4 |a 005.1  |2 23 
049 |a UAMI 
100 1 |a Pendyala, Vishnu. 
245 1 0 |a Veracity of big data :  |b machine learning and other approaches to verifying truthfulness /  |c Vishnu Pendyala. 
264 1 |a [United States] :  |b Apress,  |c [2018] 
264 4 |c ©2018 
300 |a 1 online resource (xiv, 180 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed June 13, 2018). 
505 0 |a Intro; Table of Contents; About the Author; Acknowledgments; Introduction; Chapter 1: The Big Data Phenomenon; Why "Big" Data; The V's of Big Data; Veracity -- The Fourth 'V'; Summary; Chapter 2: Veracity of Web Information; The Problem; The Causes; The Effects; The Remedies; Characteristics of a Trusted Website; Summary; Chapter 3: Approaches to Establishing Veracity of Big Data; Machine Learning; Change Detection; Optimization Techniques; Natural Language Processing; Formal Methods; Fuzzy Logic; Information Retrieval Techniques; Blockchain; Summary; Chapter 4: Change Detection Techniques. 
505 8 |a Sequential Probability Ratio Test (SPRT)The CUSUM Technique; Kalman Filter; Summary; Chapter 5: Machine Learning Algorithms; The Microblogging Example; Collecting the Ground Truth; Logistic Regression; Naïve Bayes Classifier; Support Vector Machine; Artificial Neural Networks; K-Means Clustering; Summary; Chapter 6: Formal Methods; Terminology; Propositional Logic; Predicate Calculus; Fuzzy Logic; Summary; Chapter 7: Medley of More Methods; Collaborative Filtering; Vector Space Model; Summary; Chapter 8: The Future: Blockchain and Beyond; Blockchain Explained; Blockchain for Big Data Veracity. 
520 |a Examine the problem of maintaining the quality of big data and discover novel solutions. You will learn the four V's of big data, including veracity, and study the problem from various angles. The solutions discussed are drawn from diverse areas of engineering and math, including machine learning, statistics, formal methods, and the Blockchain technology. Veracity of Big Data serves as an introduction to machine learning algorithms and diverse techniques such as the Kalman filter, SPRT, CUSUM, fuzzy logic, and Blockchain, showing how they can be used to solve problems in the veracity domain. Using examples, the math behind the techniques is explained in easy-to-understand language. Determining the truth of big data in real-world applications involves using various tools to analyze the available information. This book delves into some of the techniques that can be used. Microblogging websites such as Twitter have played a major role in public life, including during presidential elections. The book uses examples of microblogs posted on a particular topic to demonstrate how veracity can be examined and established. Some of the techniques are described in the context of detecting veiled attacks on microblogging websites to influence public opinion. What You'll Learn: Understand the problem concerning data veracity and its ramifications Develop the mathematical foundation needed to help minimize the impact of the problem using easy-to-understand language and examples Use diverse tools and techniques such as machine learning algorithms, Blockchain, and the Kalman filter to address veracity issues. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Verification (Logic)  |x Computer programs. 
650 0 |a Computer algorithms. 
650 0 |a Databases  |x Evaluation. 
650 0 |a Data editing. 
650 0 |a Data integrity. 
650 2 |a Algorithms 
650 6 |a Vérification (Logique)  |x Logiciels. 
650 6 |a Algorithmes. 
650 6 |a Édition (Informatique) 
650 6 |a Intégrité des données. 
650 7 |a algorithms.  |2 aat 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Databases.  |2 bicssc 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Computer algorithms  |2 fast 
650 7 |a Data editing  |2 fast 
650 7 |a Data integrity  |2 fast 
650 7 |a Databases  |x Evaluation  |2 fast 
776 0 8 |i Print version:  |a Pendyala, Vishnu.  |t Veracity of big data.  |d [United States] : Apress, [2018]  |z 1484236327  |z 9781484236321  |w (OCoLC)1028953663 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484236338/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35093492 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5422300 
938 |a EBSCOhost  |b EBSC  |n 1827835 
938 |a YBP Library Services  |b YANK  |n 15531879 
994 |a 92  |b IZTAP