Cargando…

Image analysis and text classification using CNNs in PyTorch : learn to build powerful image and document classifiers in minutes /

"This video teaches you how to build a powerful image classifier in just minutes using convolutional neural networks and PyTorch. It reviews the fundamental concepts of convolution and image analysis; shows you how to create a simple convolutional neural network (CNN) with PyTorch; and demonstr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly, [2018]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1038802246
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 180606s2018 xx 055 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d TOH  |d OCLCF  |d UAB  |d OCLCQ  |d OCLCO 
035 |a (OCoLC)1038802246 
037 |a CL0500000969  |b Safari Books Online 
050 4 |a QA76.87 
049 |a UAMI 
100 1 |a Mohandas, Goku,  |e on-screen presenter. 
245 1 0 |a Image analysis and text classification using CNNs in PyTorch :  |b learn to build powerful image and document classifiers in minutes /  |c with Goku Mohandas & Alfredo Canziani. 
264 1 |a [Place of publication not identified] :  |b O'Reilly,  |c [2018] 
264 4 |c ©2018 
300 |a 1 online resource (1 streaming video file (54 min., 31 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenters, Goku Mohandas, Alfredo Canziani. 
500 |a Title from title screen (viewed June 6, 2018). 
520 |a "This video teaches you how to build a powerful image classifier in just minutes using convolutional neural networks and PyTorch. It reviews the fundamental concepts of convolution and image analysis; shows you how to create a simple convolutional neural network (CNN) with PyTorch; and demonstrates how using transfer learning with a deep CNN to train on image datasets can generate state-of-the-art performance. The course is designed for the software engineer looking to get started with deep learning and for the AI researcher with TensorFlow or Theano experience who wants a smooth transition into PyTorch. Prerequisites include an understanding of algebra, basic calculus, and basic Python skills. Learners should download and install PyTorch before starting class."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Neural networks (Computer science) 
650 0 |a Python (Computer program language) 
650 0 |a Artificial intelligence. 
650 0 |a Machine learning. 
650 2 |a Neural Networks, Computer 
650 2 |a Artificial Intelligence 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Python (Langage de programmation) 
650 6 |a Intelligence artificielle. 
650 6 |a Apprentissage automatique. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
700 1 |a Canziani, Alfredo,  |e on-screen presenter. 
856 4 0 |u https://learning.oreilly.com/videos/~/9781491989968/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP