Cargando…

Deep belief nets in C++ and CUDA C : Volume 2, Autoencoding in the complex domain /

Discover the essential building blocks of a common and powerful form of deep belief net: the autoencoder. You'll take this topic beyond current usage by extending it to the complex domain for signal and image processing applications. Deep Belief Nets in C++ and CUDA C: Volume 2 also covers seve...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Masters, Timothy
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Berkeley, CA] : Apress, [2018]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1038486081
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 180604s2018 cau o 001 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d N$T  |d GW5XE  |d AZU  |d UAB  |d OCLCQ  |d UMI  |d UPM  |d OCLCF  |d TOH  |d VT2  |d U3W  |d STF  |d EBLCP  |d WAU  |d DEBBG  |d OCLCQ  |d SNK  |d CEF  |d CNCEN  |d YOU  |d WYU  |d G3B  |d LVT  |d S9I  |d K6U  |d CAUOI  |d D6H  |d UKMGB  |d MERER  |d OCLCQ  |d COO  |d LEAUB  |d OCLCQ  |d ADU  |d UHL  |d LEATE  |d UKAHL  |d OCLCQ  |d BRF  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB921651  |2 bnb 
016 7 |a 019177172  |2 Uk 
019 |a 1039074902  |a 1039701151  |a 1040615475  |a 1041858436  |a 1042912169  |a 1047642159  |a 1055315878  |a 1066450952  |a 1081255299  |a 1086460910  |a 1097123711  |a 1105776393  |a 1112880936  |a 1113294459  |a 1122813890  |a 1124437398  |a 1125669754  |a 1129349134 
020 |a 9781484236468  |q (electronic bk.) 
020 |a 1484236467  |q (electronic bk.) 
020 |z 9781484236451 
020 |z 1484236459 
024 7 |a 10.1007/978-1-4842-3646-8  |2 doi 
024 8 |a 9781484236451 
024 8 |a 9781484236468 
029 1 |a AU@  |b 000063566241 
029 1 |a CHNEW  |b 001069589 
029 1 |a CHVBK  |b 577488236 
029 1 |a UKMGB  |b 019177172 
035 |a (OCoLC)1038486081  |z (OCoLC)1039074902  |z (OCoLC)1039701151  |z (OCoLC)1040615475  |z (OCoLC)1041858436  |z (OCoLC)1042912169  |z (OCoLC)1047642159  |z (OCoLC)1055315878  |z (OCoLC)1066450952  |z (OCoLC)1081255299  |z (OCoLC)1086460910  |z (OCoLC)1097123711  |z (OCoLC)1105776393  |z (OCoLC)1112880936  |z (OCoLC)1113294459  |z (OCoLC)1122813890  |z (OCoLC)1124437398  |z (OCoLC)1125669754  |z (OCoLC)1129349134 
037 |a CL0500000974  |b Safari Books Online 
050 4 |a QA76.87 
072 7 |a COM  |x 000000  |2 bisacsh 
072 7 |a UMA  |2 bicssc 
082 0 4 |a 006.32  |2 23 
049 |a UAMI 
100 1 |a Masters, Timothy. 
245 1 0 |a Deep belief nets in C++ and CUDA C :  |n Volume 2,  |p Autoencoding in the complex domain /  |c Timothy Masters. 
246 3 0 |a Autoencoding in the complex domain 
260 |a [Berkeley, CA] :  |b Apress,  |c [2018] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
500 |a Includes index. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed June 7, 2018). 
505 0 |a 0. Introduction -- 1. Embedded Class Labels -- 2. Signal Preprocessing -- 3. Image Preprocessing -- 4. Autoencoding -- 5. Deep Operating Manual. 
520 |a Discover the essential building blocks of a common and powerful form of deep belief net: the autoencoder. You'll take this topic beyond current usage by extending it to the complex domain for signal and image processing applications. Deep Belief Nets in C++ and CUDA C: Volume 2 also covers several algorithms for preprocessing time series and image data. These algorithms focus on the creation of complex-domain predictors that are suitable for input to a complex-domain autoencoder. Finally, you'll learn a method for embedding class information in the input layer of a restricted Boltzmann machine. This facilitates generative display of samples from individual classes rather than the entire data distribution. The ability to see the features that the model has learned for each class separately can be invaluable. At each step this book provides you with intuitive motivation, a summary of the most important equations relevant to the topic, and highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. You will: " Code for deep learning, neural networks, and AI using C++ and CUDA C " Carry out signal preprocessing using simple transformations, Fourier transforms, Morlet wavelets, and more " Use the Fourier Transform for image preprocessing " Implement autoencoding via activation in the complex domain " Work with algorithms for CUDA gradient computation " Use the DEEP operating manual 
542 |f © Copyright 2018 Timothy Masters.  |g 2018 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Neural networks (Computer science) 
650 0 |a C++ (Computer program language) 
650 2 |a Neural Networks, Computer 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a C++ (Langage de programmation) 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a C++ (Computer program language)  |2 fast 
650 7 |a Neural networks (Computer science)  |2 fast 
776 0 8 |i Print version:  |z 1484236459  |z 9781484236451  |w (OCoLC)1030596016 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484236468/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35093496 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5406338 
938 |a EBSCOhost  |b EBSC  |n 1822674 
938 |a YBP Library Services  |b YANK  |n 15468669 
994 |a 92  |b IZTAP