Cargando…

Machine learning in the cloud with Azure machine learning /

"With the arrival of cloud computing and multi-core machines, we have enough compute capacity at our disposal to churn large volumes of data and dig out the hidden patterns contained in these mountains of data. This technology comes in handy, especially when handling Big Data. Today, companies...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : Packt Publishing, 2018.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1037099813
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 180523s2018 xx 180 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d TOH  |d ERF  |d OCLCO  |d OCLCQ  |d OCLCO 
029 1 |a AU@  |b 000067116600 
029 1 |a AU@  |b 000073487099 
035 |a (OCoLC)1037099813 
037 |a CL0500000966  |b Safari Books Online 
050 4 |a QA76.585 
049 |a UAMI 
100 1 |a Aggarwal, Manuj,  |e on-screen presenter. 
245 1 0 |a Machine learning in the cloud with Azure machine learning /  |c Manuj Aggarwal. 
264 1 |a [Place of publication not identified] :  |b Packt Publishing,  |c 2018. 
300 |a 1 online resource (1 streaming video file (2 hr., 59 min., 37 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Manuj Aggarwal. 
500 |a Title from resource description page (Safari, viewed May 22, 2018). 
520 |a "With the arrival of cloud computing and multi-core machines, we have enough compute capacity at our disposal to churn large volumes of data and dig out the hidden patterns contained in these mountains of data. This technology comes in handy, especially when handling Big Data. Today, companies collect and accumulate data at massive, unmanageable rates for website clicks, credit card transactions, GPS trails, social media interactions, and so on. And it is becoming a challenge to process all the valuable information and use it in a meaningful way. This is where machine learning algorithms come into the picture. These algorithms use all the collected "past" data to learn patterns and predict results or insights that help us make better decisions backed by actual analysis. You may have experienced various examples of machine learning in your daily life. Machine learning is used to build models from historical data, to forecast the future events with an acceptable level of reliability. This concept is known as predictive analytics. To get more accuracy in the analysis, we can also combine machine learning with other techniques such as data mining or statistical modeling. This progress in the field of machine learning is great news for the tech industry and humanity in general. But the downside is that there aren't enough data scientists or machine learning engineers who understand these complex topics. Well, what if there was an easy to use a web service in the cloud, which could do most of the heavy lifting for us? What if it scaled dynamically based on our data volume and velocity? The answer is the new cloud service from Microsoft called Azure Machine Learning."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Windows Azure. 
630 0 7 |a Windows Azure.  |2 fast  |0 (OCoLC)fst01796039 
650 0 |a Cloud computing. 
650 0 |a Machine learning. 
650 0 |a Data mining. 
650 2 |a Data Mining 
650 6 |a Infonuagique. 
650 6 |a Apprentissage automatique. 
650 6 |a Exploration de données (Informatique) 
650 7 |a Cloud computing.  |2 fast  |0 (OCoLC)fst01745899 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
655 4 |a Electronic videos. 
856 4 0 |u https://learning.oreilly.com/videos/~/9781789347524/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP