Cargando…

Deep Belief Nets in C++ and CUDA C. Volume 1, Restricted Boltzmann machines and supervised feedforward networks /

Discover the essential building blocks of the most common forms of deep belief networks. At each step this book provides intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Masters, Timothy (Autor)
Otros Autores: Patnayak, Chinmaya (technical reviewer.)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Apress, [2018]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1032810307
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 180430s2018 nyua o 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d GW5XE  |d AZU  |d COO  |d UMI  |d UPM  |d UAB  |d OCLCF  |d OCLCQ  |d STF  |d TOH  |d CEF  |d YDX  |d VT2  |d WAU  |d U3W  |d DEBBG  |d SNK  |d WYU  |d G3B  |d OCLCQ  |d LVT  |d C6I  |d UKMGB  |d K6U  |d CAUOI  |d D6H  |d MERER  |d LEAUB  |d OCLCQ  |d UKAHL  |d LQU  |d FVL  |d CNCEN  |d OCLCQ  |d UHL  |d LEATE  |d BRF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ  |d OCLCO 
015 |a GBB8M4667  |2 bnb 
016 7 |a 019140204  |2 Uk 
019 |a 1034546155  |a 1037100034  |a 1038404852  |a 1048127661  |a 1066579705  |a 1081251006  |a 1086453701  |a 1103262206  |a 1105190200  |a 1105725072  |a 1105802030  |a 1113221009  |a 1113394532  |a 1122813389  |a 1129339690 
020 |a 9781484235911  |q (electronic bk.) 
020 |a 1484235916  |q (electronic bk.) 
020 |a 1484235908 
020 |a 9781484235904 
020 |z 9781484235904 
024 7 |a 10.1007/978-1-4842-3591-1  |2 doi 
024 8 |a 9781484235904 
024 8 |a 9781484235911 
027 |a SPRINTER 
029 1 |a AU@  |b 000063566570 
029 1 |a AU@  |b 000063845403 
029 1 |a UKMGB  |b 019140204 
035 |a (OCoLC)1032810307  |z (OCoLC)1034546155  |z (OCoLC)1037100034  |z (OCoLC)1038404852  |z (OCoLC)1048127661  |z (OCoLC)1066579705  |z (OCoLC)1081251006  |z (OCoLC)1086453701  |z (OCoLC)1103262206  |z (OCoLC)1105190200  |z (OCoLC)1105725072  |z (OCoLC)1105802030  |z (OCoLC)1113221009  |z (OCoLC)1113394532  |z (OCoLC)1122813389  |z (OCoLC)1129339690 
037 |a CL0500000966  |b Safari Books Online 
050 4 |a QA76.87  |b .M368 2018 
072 7 |a COM  |x 000000  |2 bisacsh 
072 7 |a UMA  |2 bicssc 
082 0 4 |a 006.32  |2 23 
049 |a UAMI 
100 1 |a Masters, Timothy,  |e author. 
245 1 0 |a Deep Belief Nets in C++ and CUDA C.  |n Volume 1,  |p Restricted Boltzmann machines and supervised feedforward networks /  |c Timothy Masters. 
246 3 0 |a Restricted Boltzmann machines and supervised feedforward networks 
264 1 |a New York, NY :  |b Apress,  |c [2018] 
264 4 |c ©2018 
300 |a 1 online resource (ix, 219 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
500 |a Includes index. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed May 02, 2018). 
505 0 |a 1. Introduction -- 2. Supervised Feedforward Networks -- 3. Restricted Boltzmann Machines -- 4. Greedy Training: Generative Samplings -- 5. DEEP Operating Manual. 
520 |a Discover the essential building blocks of the most common forms of deep belief networks. At each step this book provides intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. The first of three in a series on C++ and CUDA C deep learning and belief nets, Deep Belief Nets in C++ and CUDA C: Volume 1 shows you how the structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a thought process that is capable of learning abstract concepts built from simpler primitives. As such, you'll see that a typical deep belief net can learn to recognize complex patterns by optimizing millions of parameters, yet this model can still be resistant to overfitting. All the routines and algorithms presented in the book are available in the code download, which also contains some libraries of related routines. You will: Employ deep learning using C++ and CUDA C Work with supervised feedforward networks Implement restricted Boltzmann machines Use generative samplings Discover why these are important. 
542 |f © Copyright 2018 Timothy Masters.  |g 2018 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Neural networks (Computer science) 
650 0 |a C++ (Computer program language) 
650 2 |a Neural Networks, Computer 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a C++ (Langage de programmation) 
650 7 |a Programming & scripting languages: general.  |2 bicssc 
650 7 |a Databases.  |2 bicssc 
650 7 |a Business mathematics & systems.  |2 bicssc 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a C++ (Computer program language)  |2 fast 
650 7 |a Neural networks (Computer science)  |2 fast 
700 1 |a Patnayak, Chinmaya,  |e technical reviewer. 
776 0 8 |i Printed edition:  |z 9781484235904 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484235911/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35093482 
938 |a EBSCOhost  |b EBSC  |n 1799283 
994 |a 92  |b IZTAP