An introduction to machine learning interpretability : an applied perspective on fairness, accountability, transparency, and explainable AI /
Innovation and competition are driving analysts and data scientists toward increasingly complex predictive modeling and machine learning algorithms. This complexity makes these models accurate but also makes their predictions difficult to understand. When accuracy outpaces interpretability, human tr...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | Hall, Patrick (Autor), Gill, Navdeep (Autor) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Sebastopol, CA :
O'Reilly Media,
[2018]
|
Edición: | First edition. |
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Ejemplares similares
-
An introduction to machine learning interpretability : an applied perspective on fairness, accountability, transparency, and explainable AI /
por: Hall, Patrick, et al.
Publicado: (2019) -
Machine learning fundamentals /
por: Saleh, Hyatt
Publicado: (2018) -
Machine learning with TensorFlow /
por: Shukla, Nishant, 1992-
Publicado: (2018) -
Manipulating and Measuring Model Interpretability /
Publicado: (2019) -
The future of machine intelligence : perspectives from leading practitioners /
por: Beyer, David
Publicado: (2016)