Cargando…

An introduction to machine learning interpretability : an applied perspective on fairness, accountability, transparency, and explainable AI /

Innovation and competition are driving analysts and data scientists toward increasingly complex predictive modeling and machine learning algorithms. This complexity makes these models accurate but also makes their predictions difficult to understand. When accuracy outpaces interpretability, human tr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Hall, Patrick (Autor), Gill, Navdeep (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, [2018]
Edición:First edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1031484879
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 180418s2018 caua ob 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d MERER  |d STF  |d TOH  |d CEF  |d OCLCQ  |d KSU  |d OCLCQ  |d DEBBG  |d G3B  |d S9I  |d UAB  |d CZL  |d OCLCQ  |d OCLCO  |d OCLCQ 
020 |a 1492033146 
020 |a 9781492033141 
020 |z 9781492033141 
029 1 |a GBVCP  |b 1020522119 
035 |a (OCoLC)1031484879 
037 |a CL0500000957  |b Safari Books Online 
050 4 |a Q325.5 
049 |a UAMI 
100 1 |a Hall, Patrick,  |e author. 
245 1 3 |a An introduction to machine learning interpretability :  |b an applied perspective on fairness, accountability, transparency, and explainable AI /  |c Patrick Hall and Navdeep Gill. 
246 3 0 |a Applied perspective on fairness, accountability, transparency, and explainable AI 
250 |a First edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media,  |c [2018] 
264 4 |c Ã2018 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
588 0 |a Online resource; title from title page (Safari, viewed April 17, 2018). 
504 |a Includes bibliographical references. 
520 |a Innovation and competition are driving analysts and data scientists toward increasingly complex predictive modeling and machine learning algorithms. This complexity makes these models accurate but also makes their predictions difficult to understand. When accuracy outpaces interpretability, human trust suffers, affecting business adoption, regulatory oversight, and model documentation. Banking, insurance, and healthcare in particular require predictive models that are interpretable. In this ebook, Patrick Hall and Navdeep Gill from H2O.ai thoroughly introduce the idea of machine learning interpretability and examine a set of machine learning techniques, algorithms, and models to help data scientists improve the accuracy of their predictive models while maintaining interpretability. Learn how machine learning and predictive modeling are applied in practice Understand social and commercial motivations for machine learning interpretability, fairness, accountability, and transparency Explore the differences between linear models and more accurate machine learning models Get a definition of interpretability and learn about the groups leading interpretability research Examine a taxonomy for classifying and describing interpretable machine learning approaches Learn several practical techniques for data visualization, training interpretable machine learning models, and generating explanations for complex model predictions Explore automated approaches for testing model interpretability. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
700 1 |a Gill, Navdeep,  |e author. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781492033158/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP