Cargando…

R deep learning projects : master the techniques to design and develop neural network models in R /

5 real-world projects to help you master deep learning concepts About This Book Master the different deep learning paradigms and build real-world projects related to text generation, sentiment analysis, fraud detection, and more Get to grips with R's impressive range of Deep Learning libraries...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Liu, Yuxi (Autor), Maldonado, Pablo (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2018.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1028639865
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 180314s2018 enka o 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d STF  |d NLE  |d TOH  |d OCLCF  |d CEF  |d KSU  |d DEBBG  |d G3B  |d S9I  |d UAB  |d RDF  |d OCLCQ  |d OCLCO  |d OCLCQ 
020 |a 9781788474559 
020 |a 1788474554 
020 |a 1788478401 
020 |a 9781788478403 
020 |z 9781788478403 
029 1 |a GBVCP  |b 1016524382 
035 |a (OCoLC)1028639865 
037 |a CL0500000946  |b Safari Books Online 
050 4 |a Q325.5 
082 0 4 |a 519.502855133  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
100 1 |a Liu, Yuxi,  |e author. 
245 1 0 |a R deep learning projects :  |b master the techniques to design and develop neural network models in R /  |c Yuxi (Hayden) Liu, Pablo Maldonado. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2018. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
588 0 |a Online resource; title from title page (viewed March 14, 2018). 
520 |a 5 real-world projects to help you master deep learning concepts About This Book Master the different deep learning paradigms and build real-world projects related to text generation, sentiment analysis, fraud detection, and more Get to grips with R's impressive range of Deep Learning libraries and frameworks such as deepnet, MXNetR, Tensorflow, H2O, Keras, and text2vec Practical projects that show you how to implement different neural networks with helpful tips, tricks, and best practices Who This Book Is For Machine learning professionals and data scientists looking to master deep learning by implementing practical projects in R will find this book a useful resource. A knowledge of R programming and the basic concepts of deep learning is required to get the best out of this book. What You Will Learn Instrument Deep Learning models with packages such as deepnet, MXNetR, Tensorflow, H2O, Keras, and text2vec Apply neural networks to perform handwritten digit recognition using MXNet Get the knack of CNN models, Neural Network API, Keras, and TensorFlow for traffic sign classification Implement credit card fraud detection with Autoencoders Master reconstructing images using variational autoencoders Wade through sentiment analysis from movie reviews Run from past to future and vice versa with bidirectional Long Short-Term Memory (LSTM) networks Understand the applications of Autoencoder Neural Networks in clustering and dimensionality reduction In Detail R is a popular programming language used by statisticians and mathematicians for statistical analysis, and is popularly used for deep learning. Deep Learning, as we all know, is one of the trending topics today, and is finding practical applications in a lot of domains. This book demonstrates end-to-end implementations of five real-world projects on popular topics in deep learning such as handwritten digit recognition, traffic light detection, fraud detection, text generation, and sentiment analysis. You'll learn how to train effective neural networks in R - including convolutional neural networks, recurrent neural networks, and LSTMs - and apply them in practical scenarios. The book also highlights how neural networks can be trained using GPU capabilities. You will use popular R libraries and packages - such as MXNetR, H2O, deepnet, and more - to implement the projects. By the end of this book, you will have a better understanding of deep learning concepts and techniques and how to use them in a p ... 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a R (Computer program language) 
650 0 |a Data mining. 
650 6 |a Apprentissage automatique. 
650 6 |a R (Langage de programmation) 
650 6 |a Exploration de données (Informatique) 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a R (Computer program language)  |2 fast  |0 (OCoLC)fst01086207 
700 1 |a Maldonado, Pablo,  |e author. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781788478403/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP