|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_on1028639698 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr unu|||||||| |
008 |
180314s2018 nyua o 001 0 eng d |
040 |
|
|
|a UMI
|b eng
|e rda
|e pn
|c UMI
|d STF
|d TOH
|d OCLCF
|d CEF
|d KSU
|d OCLCQ
|d DEBBG
|d G3B
|d S9I
|d UAB
|d VLY
|d OCLCQ
|d OCLCO
|d OCLCQ
|
020 |
|
|
|a 9781484230541
|
020 |
|
|
|a 148423054X
|
020 |
|
|
|a 1484230531
|
020 |
|
|
|a 9781484230534
|
020 |
|
|
|z 9781484230534
|q (print)
|
029 |
1 |
|
|a GBVCP
|b 1016523327
|
035 |
|
|
|a (OCoLC)1028639698
|
037 |
|
|
|a CL0500000946
|b Safari Books Online
|
050 |
|
4 |
|a QA76.9.D35
|
082 |
0 |
4 |
|a 005.73
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Vermeulen, Andreas François,
|e author.
|
245 |
1 |
0 |
|a Practical data science :
|b a guide to building the technology stack for turning data lakes into business assets /
|c Andreas François Vermeulen.
|
264 |
|
1 |
|a [New York, New York] :
|b Apress,
|c [2018]
|
264 |
|
2 |
|a New York, NY :
|b Distributed to the Book trade worldwide by Springer Science + Business Media New York
|
264 |
|
4 |
|c ©2018
|
300 |
|
|
|a 1 online resource (1 volume) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|
588 |
0 |
|
|a Online resource; title from cover (viewed March 13, 2018).
|
500 |
|
|
|a Includes index.
|
505 |
0 |
|
|a Chapter 1: Data Science Technology Stack -- Chapter 2: Vermeulen -- Krennwallner -- Hillman -- Clark -- Chapter 3: Layered Framework -- Chapter 4: Business Layer -- Chapter 5: Utility Layer -- Chapter 6: Three Management Layers -- Chapter 7: Retrieve Super Step -- Chapter 8: Assess Super Step -- Chapter 9: Process Super Step -- Chapter 10: Transform Super Step -- Chapter 11: Organize and Report Super Step --
|
520 |
|
|
|a Learn how to build a data science technology stack and perform good data science with repeatable methods. You will learn how to turn data lakes into business assets. The data science technology stack demonstrated in Practical Data Science is built from components in general use in the industry. Data scientist Andreas Vermeulen demonstrates in detail how to build and provision a technology stack to yield repeatable results. He shows you how to apply practical methods to extract actionable business knowledge from data lakes consisting of data from a polyglot of data types and dimensions. What You'll Learn: Become fluent in the essential concepts and terminology of data science and data engineering Build and use a technology stack that meets industry criteria Master the methods for retrieving actionable business knowledge Coordinate the handling of polyglot data types in a data lake for repeatable results.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Data structures (Computer science)
|
650 |
|
0 |
|a Database management.
|
650 |
|
6 |
|a Structures de données (Informatique)
|
650 |
|
6 |
|a Bases de données
|x Gestion.
|
650 |
|
7 |
|a Data structures (Computer science)
|2 fast
|0 (OCoLC)fst00887978
|
650 |
|
7 |
|a Database management.
|2 fast
|0 (OCoLC)fst00888037
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781484230541/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
994 |
|
|
|a 92
|b IZTAP
|