Cargando…

Unstructured data analytics : how to improve customer acquisition, customer retention, and fraud detection and prevention /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Isson, Jean Paul, 1971-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, New Jersey : Wiley, 2018.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1028022728
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 180309s2018 nju ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d DG1  |d OCLCF  |d MERER  |d UAB  |d UMI  |d STF  |d UPM  |d YDX  |d IDB  |d TOH  |d OCLCQ  |d COO  |d CEF  |d OCLCQ  |d KSU  |d DEBBG  |d VT2  |d K6U  |d D6H  |d OCLCQ  |d G3B  |d RECBK  |d S9I  |d C6I  |d U3W  |d DKU  |d OCLCQ  |d BRX  |d LIV  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 1031215659  |a 1103264988  |a 1138965798  |a 1153012127  |a 1192347786  |a 1228533637  |a 1240520868  |a 1244446105  |a 1244446271  |a 1249217268 
020 |a 9781119325499  |q (electronic bk.) 
020 |a 1119325498  |q (electronic bk.) 
020 |a 9781119378846  |q (electronic bk.) 
020 |a 1119378842  |q (electronic bk.) 
020 |a 1119129753 
020 |a 9781119129752 
020 |z 9781119129752 
029 1 |a AU@  |b 000061996807 
029 1 |a AU@  |b 000062299275 
029 1 |a AU@  |b 000065314882 
029 1 |a AU@  |b 000066757760 
029 1 |a AU@  |b 000067103387 
029 1 |a AU@  |b 000068213681 
029 1 |a CHNEW  |b 001003193 
029 1 |a CHVBK  |b 516428950 
029 1 |a GBVCP  |b 1019257393 
035 |a (OCoLC)1028022728  |z (OCoLC)1031215659  |z (OCoLC)1103264988  |z (OCoLC)1138965798  |z (OCoLC)1153012127  |z (OCoLC)1192347786  |z (OCoLC)1228533637  |z (OCoLC)1240520868  |z (OCoLC)1244446105  |z (OCoLC)1244446271  |z (OCoLC)1249217268 
037 |a CL0500000955  |b Safari Books Online 
050 4 |a HD30.215 
072 7 |a BUS  |x 082000  |2 bisacsh 
072 7 |a BUS  |x 041000  |2 bisacsh 
072 7 |a BUS  |x 042000  |2 bisacsh 
072 7 |a BUS  |x 085000  |2 bisacsh 
082 0 4 |a 658.4/038  |2 23 
049 |a UAMI 
100 1 |a Isson, Jean Paul,  |d 1971- 
245 1 0 |a Unstructured data analytics :  |b how to improve customer acquisition, customer retention, and fraud detection and prevention /  |c Jean Paul Isson. 
264 1 |a Hoboken, New Jersey :  |b Wiley,  |c 2018. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed March 12, 2018). 
500 |a Includes index. 
505 0 |a Cover; Title Page; Copyright; Contents; Foreword; Preface; Acknowledgments; Chapter 1: The Age of Advanced Business Analytics; Introduction; Why the Analytics Hype Today?; 1. Costs to Store and Process Information Have Reduced; 2. Interactive Devices and Censors Have Increased; 3. Data Analytics Infrastructures and Software Have Increased; 4. User-Friendly and Invisible Data Analytics Tools Have Emerged; 5. Data Analytics Is Becoming Mainstream, and It Means a Lot to Our Economy and World; 6. Major Leading Tech Companies Have Pioneered the Data Economy. 
505 8 |a 7. Big Data Analytics Has Become a Big Market Opportunity8. The Number of Data Science University Programs and MOOCs Has Intensified; A Short History of Data Analytics; Early Adopters: Insurance and Finance; What is the Analytics Age?; Interview with Wayne Thompson, Chief Data Scientist at SAS Institute; Key Takeaways; Notes; Further Reading; Chapter 2: Unstructured Data Analytics: The Next Frontier of Analytics Innovation; Introduction; What Is UDA?; Why UDA Today?; Big Data as a Catalyst; Artificial Intelligence (AI); Machine Learning; Deep Learning. 
505 8 |a Representation Learning or Feature LearningNatural Language Processing; Cognitive Computing/Analytics; Neural Network; The UDA Industry; Uses of UDA; How UDA Works; Why UDA Is the Next Analytical Frontier?; Interview with Seth Grimes on Analytics as the Next Business Frontier; UDA Success Stories; Amazon.com; Spotify; Facebook; ITA Software; Internet Search Engines: Bing.com, Google.com, and the Like; Monster Worldwide; The Golden Age of UDA; Key Takeaways; Notes; Further Reading; Chapter 3: The Framework to Put UDA to Work; Introduction; Why Have a Framework to Analyze Unstructured Data? 
505 8 |a The IMPACT Cycle Applied to Unstructured DataFocusing on the IMPACT; Identify Business Questions; Master the Data; Text Parsing Example; The T3; Technique; Tools; Interview with Cindy Forbes, Chief Analytics Officer and Executive Vice President at Manulife Financial; Case Study; Key Takeaways; Notes; Further Reading; Chapter 4: How to Increase Customer Acquisition and Retention with UDA; The Voice of the Customer: A Goldmine for Understanding Customers; Why Should You Care about UDA for Customer Acquisition and Retention?; The Voice of the Customer; Predictive Models and Online Marketing. 
505 8 |a Predictive ModelsUDA and Online Marketing: Optimizing Your Acquisition and Customer Response Models; How Does UDA Applied to Customer Acquisition Work?; The Power of UDA for E-mail Response and Ad Optimization; How to Drive More Conversion and Engagement with UDA Applied to Content; How UDA Applied to Customer Retention (Churn) Works; What Is UDA Applied to Customer Acquisition?; Consumer/Customer Decision Journey; Lessons from McKinsey's Consumer Decision Journey; What Is UDA Applied to Customer Retention (Churn)?; The Power of UDA Powered by Virtual Agent. 
504 |a Includes bibliographical references and index. 
520 8 |a Annotation  |b 'Unstructured Data Analytics' provides an accessible, non-technical introduction to the analysis of unstructured data. Written by global experts in the analytics space, this book presents unstructured data analysis (UDA) concepts in a practical way, highlighting the broad scope of applications across industries, companies, and business functions. The discussion covers key aspects of UDA implementation, beginning with an explanation of the data and the information it provides, then moving into a holistic framework for implementation. Case studies show how real-world companies are leveraging UDA in security and customer management, and provide clear example of both traditional business applications and newer, more innovative practices. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Industrial management  |x Statistical methods. 
650 0 |a Business planning. 
650 6 |a Gestion d'entreprise  |x Méthodes statistiques. 
650 7 |a BUSINESS & ECONOMICS  |x Industrial Management.  |2 bisacsh 
650 7 |a BUSINESS & ECONOMICS  |x Management.  |2 bisacsh 
650 7 |a BUSINESS & ECONOMICS  |x Management Science.  |2 bisacsh 
650 7 |a BUSINESS & ECONOMICS  |x Organizational Behavior.  |2 bisacsh 
650 7 |a Business planning.  |2 fast  |0 (OCoLC)fst00842819 
650 7 |a Industrial management  |x Statistical methods.  |2 fast  |0 (OCoLC)fst00971330 
776 0 8 |i Print version:  |a Isson, Jean Paul, 1971-  |t Unstructured data analytics.  |d Hoboken, New Jersey : Wiley, 2018  |w (DLC) 2017278101 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781119129752/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH30990525 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5317473 
938 |a EBSCOhost  |b EBSC  |n 1726695 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00742393 
938 |a YBP Library Services  |b YANK  |n 15217753 
994 |a 92  |b IZTAP