|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_on1023864062 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr unu|||||||| |
008 |
180222s2016 caua ob 000 0 eng d |
040 |
|
|
|a UMI
|b eng
|e rda
|e pn
|c UMI
|d OCLCF
|d STF
|d TOH
|d MERER
|d COO
|d OCLCQ
|d UOK
|d CEF
|d KSU
|d DEBBG
|d WYU
|d G3B
|d S9I
|d C6I
|d UAB
|d CNCEN
|d IE@
|d OCLCQ
|d OCLCO
|d OCLCQ
|
020 |
|
|
|a 9781491964644
|
020 |
|
|
|a 1491964642
|
029 |
1 |
|
|a GBVCP
|b 1016523645
|
035 |
|
|
|a (OCoLC)1023864062
|
037 |
|
|
|a CL0500000941
|b Safari Books Online
|
050 |
|
4 |
|a QA76.73.P98
|
082 |
1 |
4 |
|a [E]
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Vanderplas, Jacob T.,
|e author.
|
245 |
1 |
2 |
|a A whirlwind tour of Python /
|c Jake VanderPlas.
|
250 |
|
|
|a First edition.
|
264 |
|
1 |
|a Sebastopol, CA :
|b O'Reilly Media,
|c 2016.
|
300 |
|
|
|a 1 online resource (1 volume) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|
588 |
0 |
|
|a Online resource; title from title page (viewed February 20, 2018).
|
504 |
|
|
|a Includes bibliographical references.
|
520 |
|
|
|a To tap into the power of Python's open data science stack--including NumPy, Pandas, Matplotlib, Scikit-learn, and other tools--you first need to understand the syntax, semantics, and patterns of the Python language. This report provides a brief yet comprehensive introduction to Python for engineers, researchers, and data scientists who are already familiar with another programming language. Author Jake VanderPlas, an interdisciplinary research director at the University of Washington, explains Python's essential syntax and semantics, built-in data types and structures, function definitions, control flow statements, and more, using Python 3 syntax. You'll explore: Python syntax basics and running Python code Basic semantics of Python variables, objects, and operators Built-in simple types and data structures Control flow statements for executing code blocks conditionally Methods for creating and using reusable functions Iterators, list comprehensions, and generators String manipulation and regular expressions Python's standard library and third-party modules Python's core data science tools Recommended resources to help you learn more.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Python (Computer program language)
|
650 |
|
0 |
|a Data mining.
|
650 |
|
2 |
|a Data Mining
|
650 |
|
6 |
|a Python (Langage de programmation)
|
650 |
|
6 |
|a Exploration de données (Informatique)
|
650 |
|
7 |
|a Data mining.
|2 fast
|0 (OCoLC)fst00887946
|
650 |
|
7 |
|a Python (Computer program language)
|2 fast
|0 (OCoLC)fst01084736
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781492037859/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
994 |
|
|
|a 92
|b IZTAP
|