Cargando…

K-means and hierarchical clustering with Python /

Clustering is the usual starting point for unsupervised machine learning. This lesson introduces the k-means and hierarchical clustering algorithms, implemented in Python code. Why is it important? Whenever you look at a data source, it's likely that the data will somehow form clusters. Dataset...

Descripción completa

Detalles Bibliográficos
Autor principal: Grus, Joel (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: O'Reilly Media, Inc., 2016.
Edición:1st edition
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007i 4500
001 OR_on1019733741
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 180116s2016 xx o 000 0 eng
040 |a UIU  |b eng  |e pn  |c UIU  |d OCLCO  |d OCLCF  |d C6I  |d OCLCQ  |d OCLCO  |d OCLCQ 
020 |a 9781491965306 
020 |a 1491965304 
020 |z 9781491966174 
029 1 |a AU@  |b 000067092297 
035 |a (OCoLC)1019733741 
049 |a UAMI 
100 1 |a Grus, Joel,  |e author. 
245 1 0 |a K-means and hierarchical clustering with Python /  |c Grus, Joel. 
250 |a 1st edition 
264 1 |b O'Reilly Media, Inc.,  |c 2016. 
300 |a 1 online resource (20 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Clustering is the usual starting point for unsupervised machine learning. This lesson introduces the k-means and hierarchical clustering algorithms, implemented in Python code. Why is it important? Whenever you look at a data source, it's likely that the data will somehow form clusters. Datasets with higher dimensions become increasingly more difficult to "eyeball" based on human perception and intuition. These clustering algorithms allow you to discover similarities within data at scale, without first having to label a large training dataset. What you'll learn--and how you can apply it Understand how the k-means and hierarchical clustering algorithms work. Create classes in Python to implement these algorithms, and learn how to apply them in example applications. Identify clusters of similar inputs, and find a representative value for each cluster. Prepare to use your own implementations or reuse algorithms implemented in scikit-learn. This lesson is for you because ... People interested in data science need to learn how to implement k-means and bottom-up hierarchical clustering algorithms Prerequisites Some experience writing code in Python Experience working with data in vector or matrix format Materials or downloads needed in advance Download this code, where you'll find this lesson's code in Chapter 19, plus you'll need the linear_algebra functions from Chapter 4. This lesson is taken from Data Science from Scratch by Joel Grus 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Python (Computer program language) 
650 6 |a Python (Langage de programmation) 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781491965306/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP