Cargando…

Introduction to machine learning with R : rigorous mathematical analysis /

Machine learning can be a difficult subject if you're not familiar with the basics. With this book, you'll get a solid foundation of introductory principles used in machine learning with the statistical programming language R. You'll start with the basics like regression, then move in...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Burger, Scott, V. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, Inc., 2018.
Edición:First edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1019732996
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 180116s2018 cau o 000 0 eng
010 |a  2018303264 
040 |a UIU  |b eng  |e rda  |e pn  |c UIU  |d OCLCO  |d OCLCF  |d OCLCO  |d N$T  |d EBLCP  |d TEFOD  |d YDX  |d XPJ  |d VT2  |d C6I  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 1028553168  |a 1028838191  |a 1028882226  |a 1037646748  |a 1090368273  |a 1103279731  |a 1202559133  |a 1240528111 
020 |a 9781491976432  |q (electronic bk.) 
020 |a 1491976438  |q (electronic bk.) 
020 |a 9781491976418  |q (electronic book) 
020 |a 1491976411  |q (electronic bk.) 
020 |a 9781491976395  |q (electronic bk.) 
020 |a 149197639X  |q (electronic bk.) 
020 |a 1491976446 
020 |a 9781491976449 
020 |z 9781491976449 
029 1 |a AU@  |b 000062230371 
029 1 |a AU@  |b 000067097544 
029 1 |a CHDSB  |b 006798555 
029 1 |a CHVBK  |b 512610681 
029 1 |a NLGGC  |b 419561404 
035 |a (OCoLC)1019732996  |z (OCoLC)1028553168  |z (OCoLC)1028838191  |z (OCoLC)1028882226  |z (OCoLC)1037646748  |z (OCoLC)1090368273  |z (OCoLC)1103279731  |z (OCoLC)1202559133  |z (OCoLC)1240528111 
037 |a 75BF2633-FBC9-4E61-A275-9D4547262A93  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.73.R3  |b B87 2018 
072 7 |a COM  |x 051010  |2 bisacsh 
082 0 4 |a 005.13/3  |2 23 
049 |a UAMI 
100 1 |a Burger, Scott, V.,  |e author. 
245 1 0 |a Introduction to machine learning with R :  |b rigorous mathematical analysis /  |c Scott V. Burger. 
250 |a First edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media, Inc.,  |c 2018. 
300 |a 1 online resource (200 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Machine learning can be a difficult subject if you're not familiar with the basics. With this book, you'll get a solid foundation of introductory principles used in machine learning with the statistical programming language R. You'll start with the basics like regression, then move into more advanced topics like neural networks, and finally delve into the frontier of machine learning in the R world with packages like Caret. By developing a familiarity with topics like understanding the difference between regression and classification models, you'll be able to solve an array of machine learning problems. Knowing when to use a specific model or not can mean the difference between a highly accurate model and a completely useless one. This book provides copious examples to build a working knowledge of machine learning. Understand the major parts of machine learning algorithms Recognize how machine learning can be used to solve a problem in a simple manner Figure out when to use certain machine learning algorithms versus others Learn how to operationalize algorithms with cutting edge packages 
505 0 |a Cover; Copyright; Table of Contents; Preface; Who Should Read This Book?; Scope of the Book; Conventions Used in This Book; O'Reilly Safari; How to Contact Us; Acknowledgments; Chapter 1. What Is a Model?; Algorithms Versus Models: What's the Difference?; A Note on Terminology; Modeling Limitations; Statistics and Computation in Modeling; Data Training; Cross-Validation; Why Use R?; The Good; R and Machine Learning; The Bad; Summary; Chapter 2. Supervised and Unsupervised Machine Learning; Supervised Models; Regression; Training and Testing of Data; Classification; Logistic Regression 
505 8 |a Supervised Clustering MethodsMixed Methods; Tree-Based Models; Random Forests; Neural Networks; Support Vector Machines; Unsupervised Learning; Unsupervised Clustering Methods; Summary; Chapter 3. Sampling Statistics and Model Training in R; Bias; Sampling in R; Training and Testing; Roles of Training and Test Sets; Why Make a Test Set?; Training and Test Sets: Regression Modeling; Training and Test Sets: Classification Modeling; Cross-Validation; k-Fold Cross-Validation; Summary; Chapter 4. Regression in a Nutshell; Linear Regression; Multivariate Regression; Regularization 
505 8 |a Polynomial RegressionGoodness of Fit with Data--The Perils of Overfitting; Root-Mean-Square Error; Model Simplicity and Goodness of Fit; Logistic Regression; The Motivation for Classification; The Decision Boundary; The Sigmoid Function; Binary Classification; Multiclass Classification; Logistic Regression with Caret; Summary; Linear Regression; Logistic Regression; Chapter 5. Neural Networks in a Nutshell; Single-Layer Neural Networks; Building a Simple Neural Network by Using R; Multiple Compute Outputs; Hidden Compute Nodes; Multilayer Neural Networks; Neural Networks for Regression 
505 8 |a Neural Networks for ClassificationNeural Networks with caret; Regression; Classification; Summary; Chapter 6. Tree-Based Methods; A Simple Tree Model; Deciding How to Split Trees; Tree Entropy and Information Gain; Pros and Cons of Decision Trees; Tree Overfitting; Pruning Trees; Decision Trees for Regression; Decision Trees for Classification; Conditional Inference Trees; Conditional Inference Tree Regression; Conditional Inference Tree Classification; Random Forests; Random Forest Regression; Random Forest Classification; Summary; Chapter 7. Other Advanced Methods 
505 8 |a Naive Bayes ClassificationBayesian Statistics in a Nutshell; Application of Naive Bayes; Principal Component Analysis; Linear Discriminant Analysis; Support Vector Machines; k-Nearest Neighbors; Regression Using kNN; Classification Using kNN; Summary; Chapter 8. Machine Learning with the caret Package; The Titanic Dataset; Data Wrangling; caret Unleashed; Imputation; Data Splitting; caret Under the Hood; Model Training; Comparing Multiple caret Models; Summary; Appendix A. Encyclopedia of Machine Learning Models in caret; Index; About the Author; Colophon 
588 0 |a Online resource; title from digital title page (viewed on May 02, 2018). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Statistics  |x Data processing. 
650 0 |a R (Computer program language) 
650 6 |a Statistique  |x Informatique. 
650 6 |a R (Langage de programmation) 
650 7 |a COMPUTERS  |x Programming Languages  |x General.  |2 bisacsh 
650 7 |a R (Computer program language)  |2 fast  |0 (OCoLC)fst01086207 
650 7 |a Statistics  |x Data processing.  |2 fast  |0 (OCoLC)fst01132113 
776 0 8 |i Print version:  |a Burger, Scott, V.  |t Introduction to machine learning with R.  |b First edition.  |d Sebastopol, CA : O'Reilly Media, Inc., 2018  |w (DLC) 2018303264 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781491976432/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH34177992 
938 |a Askews and Holts Library Services  |b ASKH  |n AH34177993 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5317745 
938 |a EBSCOhost  |b EBSC  |n 1728390 
938 |a YBP Library Services  |b YANK  |n 15211077 
994 |a 92  |b IZTAP