Cargando…

Deploying Spark ML pipelines in production on AWS : how to publish pipeline artifacts and run pipelines in production /

"Translating a Spark application from running in a local environment to running on a production cluster in the cloud requires several critical steps, including publishing artifacts, installing dependencies, and defining the steps in a pipeline. This video is a hands-on guide through the process...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly, 2017.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1019708045
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 180116s2017 xx 024 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d TOH  |d S9I  |d UAB  |d OCLCQ  |d OCLCO  |d OCLCQ 
035 |a (OCoLC)1019708045 
037 |a CL0500000929  |b Safari Books Online 
050 4 |a Q325.5 
049 |a UAMI 
100 1 |a Slepicka, Jason,  |e on-screen presenter. 
245 1 0 |a Deploying Spark ML pipelines in production on AWS :  |b how to publish pipeline artifacts and run pipelines in production /  |c with Jason Slepicka. 
264 1 |a [Place of publication not identified] :  |b O'Reilly,  |c 2017. 
300 |a 1 online resource (1 streaming video file (23 min., 20 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
380 |a Videorecording 
500 |a Title from title screen (Safari, viewed January 15, 2018). 
500 |a Release date from resource description page (Safari, viewed January 15, 2018). 
511 0 |a Presenter, Jason Slepicka. 
520 |a "Translating a Spark application from running in a local environment to running on a production cluster in the cloud requires several critical steps, including publishing artifacts, installing dependencies, and defining the steps in a pipeline. This video is a hands-on guide through the process of deploying your Spark ML pipelines in production. You'll learn how to create a pipeline that supports model reproducibility--making your machine learning models more reliable--and how to update your pipeline incrementally as the underlying data change. Learners should have basic familiarity with the following: Scala or Python; Hadoop, Spark, or Pandas; SBT or Maven; Amazon Web Services such as S3, EMR, and EC2; Bash, Docker, and REST."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a SPARK (Electronic resource) 
610 2 0 |a Amazon Web Services (Firm) 
610 2 7 |a Amazon Web Services (Firm)  |2 fast  |0 (OCoLC)fst01974501 
630 0 7 |a SPARK (Electronic resource)  |2 fast  |0 (OCoLC)fst01400497 
650 0 |a Machine learning. 
650 0 |a Cloud computing. 
650 6 |a Apprentissage automatique. 
650 6 |a Infonuagique. 
650 7 |a Cloud computing.  |2 fast  |0 (OCoLC)fst01745899 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
856 4 0 |u https://learning.oreilly.com/videos/~/9781491988879/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP