Cargando…

Monitoring and improving the performance of machine learning models : how to use ModelDB and Spark to track and improve model performance over time /

"It's critical to have 'humans in the loop' when automating the deployment of machine learning (ML) models. Why? Because models often perform worse over time. This course covers the human directed safeguards that prevent poorly performing models from deploying into production and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Slepicka, Jason (Autor)
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly, 2017.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1019708044
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 180116s2017 xx 036 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d UMI  |d TOH  |d OCLCF  |d S9I  |d UAB  |d OCLCQ  |d OCLCO 
035 |a (OCoLC)1019708044 
037 |a CL0500000929  |b Safari Books Online 
050 4 |a Q325.5 
049 |a UAMI 
100 1 |a Vartak, Manasi,  |e on-screen presenter. 
245 1 0 |a Monitoring and improving the performance of machine learning models :  |b how to use ModelDB and Spark to track and improve model performance over time /  |c with Manasi Vartak & Jason Slepicka. 
246 3 0 |a How to use ModelDB and Spark to track and improve model performance over time 
264 1 |a [Place of publication not identified] :  |b O'Reilly,  |c 2017. 
300 |a 1 online resource (1 streaming video file (35 min., 52 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
380 |a Videorecording 
500 |a Title from title screen (Safari, viewed January 15, 2018). 
500 |a Release date from resource description page (Safari, viewed January 15, 2018). 
511 0 |a Presenter, Manasi Vartak. 
520 |a "It's critical to have 'humans in the loop' when automating the deployment of machine learning (ML) models. Why? Because models often perform worse over time. This course covers the human directed safeguards that prevent poorly performing models from deploying into production and the techniques for evaluating models over time. We'll use ModelDB to capture the appropriate metrics that help you identify poorly performing models. We'll review the many factors that affect model performance (i.e., changing users and user preferences, stale data, etc.) and the variables that lose predictive power. We'll explain how to utilize classification and prediction scoring methods such as precision recall, ROC, and jaccard similarity. We'll also show you how ModelDB allows you to track provenance and metrics for model performance and health; how to integrate ModelDB with SparkML; and how to use the ModelDB APIs to store information when training models in Spark ML. Learners should have basic familiarity with the following: Scala or Python; Hadoop, Spark, or Pandas; SBT or Maven; cloud platforms like Amazon Web Services; Bash, Docker, and REST."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a SPARK (Electronic resource) 
630 0 0 |a ModelDB (Electronic resource) 
630 0 7 |a SPARK (Electronic resource)  |2 fast  |0 (OCoLC)fst01400497 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
700 1 |a Slepicka, Jason,  |e author. 
856 4 0 |u https://learning.oreilly.com/videos/~/9781491988855/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP