Cargando…

Deploying machine learning models as microservices using Docker : a REST-based architecture for serving ML model outputs at scale /

"Modern applications running in the cloud often rely on REST-based microservices architectures by using Docker containers. Docker enables your applications to communicate between one another and to compose and scale various components. Data scientists use these techniques to efficiently scale t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Slepicka, Jason (Autor)
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly, 2017.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1019708043
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 180116s2017 xx 025 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d UMI  |d OCLCF  |d TOH  |d S9I  |d UAB  |d OCLCQ  |d OCLCO 
035 |a (OCoLC)1019708043 
037 |a CL0500000929  |b Safari Books Online 
050 4 |a Q325.5 
049 |a UAMI 
100 1 |a Wilkins, Hollin,  |e on-screen presenter. 
245 1 0 |a Deploying machine learning models as microservices using Docker :  |b a REST-based architecture for serving ML model outputs at scale /  |c with Hollin Wilkins & Jason Slepicka. 
246 3 0 |a REST-based architecture for serving ML model outputs at scale 
264 1 |a [Place of publication not identified] :  |b O'Reilly,  |c 2017. 
300 |a 1 online resource (1 streaming video file (24 min., 30 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
380 |a Videorecording 
500 |a Title from title screen (Safari, viewed January 15, 2018). 
500 |a Release date from resource description page (Safari, viewed January 15, 2018). 
511 0 |a Presenter, Hollin Wilkins. 
520 |a "Modern applications running in the cloud often rely on REST-based microservices architectures by using Docker containers. Docker enables your applications to communicate between one another and to compose and scale various components. Data scientists use these techniques to efficiently scale their machine learning models to production applications. This video teaches you how to deploy machine learning models behind a REST API, to serve low latency requests from applications, without using a Spark cluster. In the process, you'll learn how to export models trained in SparkML; how to work with Docker, a convenient way to build, deploy, and ship application code for microservices; and how a model scoring service should support single on-demand predictions and bulk predictions. Learners should have basic familiarity with the following: Scala or Python; Hadoop, Spark, or Pandas; SBT or Maven; cloud platforms like Amazon Web Services; Bash, Docker, and REST."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Application software  |x Development. 
650 6 |a Apprentissage automatique. 
650 6 |a Logiciels d'application  |x Développement. 
650 7 |a Application software  |x Development.  |2 fast  |0 (OCoLC)fst00811707 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
700 1 |a Slepicka, Jason,  |e author. 
856 4 0 |u https://learning.oreilly.com/videos/~/9781491988817/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP