Cargando…

An introduction to machine learning models in production : how to transition from one-off models to reproducible pipelines /

"This course lays out the common architecture, infrastructure, and theoretical considerations for managing an enterprise machine learning (ML) model pipeline. Because automation is the key to effective operations, you'll learn about open source tools like Spark, Hive, ModelDB, and Docker a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly, 2017.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1019707838
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 180116s2017 xx 040 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d TOH  |d S9I  |d UAB  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
035 |a (OCoLC)1019707838 
037 |a CL0500000929  |b Safari Books Online 
050 4 |a Q325.5 
049 |a UAMI 
100 1 |a Slepicka, Jason,  |e on-screen presenter. 
245 1 3 |a An introduction to machine learning models in production :  |b how to transition from one-off models to reproducible pipelines /  |c with Jason Slepicka. 
264 1 |a [Place of publication not identified] :  |b O'Reilly,  |c 2017. 
300 |a 1 online resource (1 streaming video file (39 min., 56 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
380 |a Videorecording 
500 |a Title from title screen (Safari, viewed January 15, 2018). 
500 |a Release date from resource description page (Safari, viewed January 15, 2018). 
511 0 |a Presenter, Jason Slepicka. 
520 |a "This course lays out the common architecture, infrastructure, and theoretical considerations for managing an enterprise machine learning (ML) model pipeline. Because automation is the key to effective operations, you'll learn about open source tools like Spark, Hive, ModelDB, and Docker and how they're used to bridge the gap between individual models and a reproducible pipeline. You'll also learn how effective data teams operate; why they use a common process for building, training, deploying, and maintaining ML models; and how they're able to seamlessly push models into production. The course is designed for the data engineer transitioning to the cloud and for the data scientist ready to use model deployment pipelines that are reproducible and automated. Learners should have basic familiarity with: cloud platforms like Amazon Web Services; Scala or Python; Hadoop, Spark, or Pandas; SBT or Maven; Bash, Docker, and REST."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Cloud computing. 
650 0 |a Quantitative research. 
650 0 |a Mathematical statistics  |x Data processing. 
650 6 |a Apprentissage automatique. 
650 6 |a Infonuagique. 
650 6 |a Recherche quantitative. 
650 6 |a Statistique mathématique  |x Informatique. 
650 7 |a Cloud computing  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Mathematical statistics  |x Data processing  |2 fast 
650 7 |a Quantitative research  |2 fast 
856 4 0 |u https://learning.oreilly.com/videos/~/9781491988794/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP